【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由
【答案】(1)15°;(2)20°;(3)∠BAD=2∠EDC;(4)成立,理由見解析
【解析】
(1)根據(jù)等腰三角形三線合一,可知∠DAE=30°,再根據(jù)AD=AE,可求∠ADE的度數(shù),從而可知答案;
(2)同理易知答案;
(3)通過(1)(2)題的結(jié)論可知∠BAD=2∠EDC,
(4)由于AD=AE,所以∠ADE=∠AED,根據(jù)已知容易證得∠BAD=2∠EDC.
解:(1)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD=30°
∵AD=AE,
∴
∴∠DEC=90°-∠AD =15°;
(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD=40°
∵AD=AE,
∴
∴∠DEC=90°-∠ADE=20°;
(3)根據(jù)前兩問可知:∠BAD=2∠EDC
(4)仍成立,理由如下:
∵AD=AE,
∴∠ADE=∠AED
∵∠BAD+∠B=∠ADC,∠ADC=∠ADE+∠EDC
∴∠ADC=∠AED+∠EDC
∵∠AED=∠EDC+∠C
∴∠ADC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C
又∵AB=AC
∴∠B=∠C
∴∠BAD=2∠EDC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大。唬ńY(jié)果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象過點(diǎn)(98,19),它與X軸的交點(diǎn)為(P,0),與y軸交點(diǎn)為(0,q),若p是質(zhì)數(shù),q是正整數(shù),那么滿足條件的所有一次函數(shù)的個數(shù)為( )。
A.0B.1C.2D.大于2的整數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一定能確定△ABC≌△DEF的條件是( )
A.AB=DE,BC=EF,∠A=∠DB.∠A=∠E,AB=EF,∠B=∠D
C.∠A=∠D,AB=DE,∠B=∠ED.∠A=∠D,∠B=∠E,∠C=∠F
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、分別是邊長為的等邊的邊,上的動點(diǎn),點(diǎn)從頂點(diǎn),點(diǎn)從頂點(diǎn)同時出發(fā),分別沿,邊運(yùn)動,點(diǎn)到點(diǎn)停止,點(diǎn)到點(diǎn)停止.社運(yùn)動時間為秒,他們的速度都為.
(1)連接,相交于,在點(diǎn),的運(yùn)動過程中的大小是否變化?若變化,說明理由;若不變,求出它的度數(shù);
(2)當(dāng)取何值時,是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P 是 CH 的中點(diǎn),則△APH 的周長為( )
A. 15 B. 18 C. 20 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鈍角△ABC中,AB=AC,BC=2,O是邊AB上一點(diǎn),以O為圓心,OB為半徑作⊙O,交邊AB于點(diǎn)D,交邊BC于點(diǎn)E,過E作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:EF⊥AC.
(2)連結(jié)DF,若∠ABC=30°,且DF∥BC,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為的拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)坐標(biāo)為設(shè)拋物線的頂點(diǎn)為.
求拋物線的解析式及頂點(diǎn)坐標(biāo);
為軸上的一點(diǎn),當(dāng)的周長最小時,求點(diǎn)的坐標(biāo)及的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊得到△AFE,且點(diǎn)F在長方形ABCD內(nèi).將AF延長交邊BC于點(diǎn)G.若BG=3CG,則 =( )
A.B.1C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com