【題目】如圖,Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是AB,BC上的點(diǎn),且滿足AC=DC=DE=BE=1,則tanA= .
【答案】 +1
【解析】解:設(shè)∠B=x°, ∵BE=DE,
∴∠B=∠BDE=x°,
∴∠CED=2x°,
又∵DE=DC,
∴∠ECD=∠CED=2x°.
∴∠DCA=∠ACB﹣∠ECD=90°﹣2x°.
∵直角△ABC中,∠A=90°﹣∠A=90°﹣x°.
又∵CA=CD,
∴∠ADC=∠A=90°﹣x°.
∵△ACD中,∠ACD+∠A+∠ADC=180°,
∴(90﹣2x)+2(90﹣x)=180°,
解得x=22.5°,則∠CED=∠ECD=45°,
∴△ECD是等腰直角三角形,
∴EC= CD= ,
∴BC= +1,
∴tanA= = +1.
故答案是: +1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點(diǎn)G,交BE于點(diǎn)H,下面說法中正確的序號是_____.
①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D四個點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( )
A.40°
B.45°
C.50°
D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)﹣18×(﹣2)÷3
(2)(﹣)×(﹣90)÷
(3)﹣2.5÷×(﹣);
(4)(﹣10)2﹣[16+(﹣3)2]
(5)(﹣+2)÷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解學(xué)生的課外閱讀情況,就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其它四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)僅選一項),并根據(jù)調(diào)查結(jié)果制作了尚不完整的頻數(shù)分布表:
類別 | 頻數(shù)(人數(shù)) | 頻率 |
文學(xué) | m | 0.42 |
藝術(shù) | 22 | 0.11 |
科普 | 66 | n |
其他 | 28 | |
合計 | 1 |
(1)表中m= , n=;
(2)在這次抽樣調(diào)查中,最喜愛閱讀哪類讀物的學(xué)生最少?
(3)根據(jù)以上調(diào)查,試估計該校1200名學(xué)生中最喜愛閱讀科普讀物的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).
(1)求梯子底端B外移距離BD的長度;
(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答
(1)計算: +|2﹣ |;
(2)當(dāng)關(guān)于x的方程x2﹣2x+c=0有實(shí)數(shù)根時,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點(diǎn)A,頂點(diǎn)為B.
(1)用含a的式子表示點(diǎn)B的坐標(biāo);
(2)經(jīng)過點(diǎn)C(0,﹣2)的直線AC與OB(O為原點(diǎn))相交于點(diǎn)D,與拋物線的對稱軸相交于點(diǎn)E,△OCD≌△BED,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,CA=CB,D為AC上的一點(diǎn),AD=2CD,AE⊥AB交BD的延長線于E,則 = .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com