(2008•濟南)已知△ABC在平面直角坐標系的位置如圖所示,將△ABC向右平移6個單位,則平移后A點的坐標是( )

A.(-2,1)
B.(2,1)
C.(2,-1)
D.(-2,-1)
【答案】分析:直接利用平移中點的變化規(guī)律求解即可.
解答:解:原三角形中點A的坐標是(-4,1),將△ABC向右平移6個單位后,平移后點的橫坐標變?yōu)?4+6=2,而縱坐標不變,
所以點A的坐標變?yōu)椋?,1).
故選B.
點評:本題考查圖形的平移變換,關(guān)鍵是要懂得左右平移點的縱坐標不變,而上下平移時點的橫坐標不變,平移變換是中考的?键c.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•濟南)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省黃山市潛口中學(xué)中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

(2008•濟南)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東省濟南市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•濟南)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2008•濟南)已知:如圖,直線y=-x+4與x軸相交于點A,與直線y=x相交于點P.
(1)求點P的坐標;
(2)請判斷△OPA的形狀并說明理由;
(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O、P、A的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B,設(shè)運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.
求:①S與t之間的函數(shù)關(guān)系式.②當(dāng)t為何值時,S最大,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省汕頭市濠江區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•濟南)已知:如圖,直線y=-x+4與x軸相交于點A,與直線y=x相交于點P.
(1)求點P的坐標;
(2)請判斷△OPA的形狀并說明理由;
(3)動點E從原點O出發(fā),以每秒1個單位的速度沿著O、P、A的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B,設(shè)運動t秒時,矩形EBOF與△OPA重疊部分的面積為S.
求:①S與t之間的函數(shù)關(guān)系式.②當(dāng)t為何值時,S最大,并求出S的最大值.

查看答案和解析>>

同步練習(xí)冊答案