【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC

其中正確的是(  。

A. ①②③④ B. ②③ C. ①②④ D. ①③④

【答案】C

【解析】試題分析:∵△BPC是等邊三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

∴BE=2AE;故正確;

∵PC=CD,∠PCD=30°

∴∠PDC=75°,

∴∠FDP=15°

∵∠DBA=45°,

∴∠PBD=15°,

∴∠FDP=∠PBD,

∵∠DFP=∠BPC=60°,

∴△DFP∽△BPH;故正確;

∵∠FDP=∠PBD=15°,∠ADB=45°,

∴∠PDB=30°,而∠DFP=60°,

∴∠PFD≠∠PDB,

∴△PFD△PDB不會相似;故錯誤;

∵∠PDH=∠PCD=30°,∠DPH=∠DPC,

∴△DPH∽△CPD

,

∴DP2=PHPC,故正確;

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(﹣21)在第_________象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算-(-2x3y44的結(jié)果是( )

A. 16x12y16 B. -16x12y16

C. 16x7y8 D. -16x7y8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,則下列條件中:
①a=3,b=4,c= ;
②a2:b2:c2=6:8:10;
③∠A:∠B:∠C=3:4:5;
④∠A=2∠B,∠C=3∠B.
其中能判斷△ABC是直角三角形的條件為( )
A.①②
B.①④
C.②④
D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根據(jù)這個規(guī)律,則21+22+23+24+…+22017的末位數(shù)字是(
A.0
B.2
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具經(jīng)銷店在開學時購進了A、B兩種型號的計算器,已知:購進A型號的計算器20個,B型號的計算器25個需用1265元;購進A型號的計算器16個,B型號的計算器12個需用748元.求:
(1)A、B兩種型號的計算器進價分別是多少元?
(2)在(1)的條件下,若A型號的計算器的售價是30元/個,B型號的計算器的售價是45元/個,商店一次性購進兩種型號的計算器各20個,并全部銷售,求商店所獲利潤是多少元?
(3)在兩種型號計算器的進價和售價均保持不變的情況下,該商店準備購進A、B兩種型號的計算器共40個,且A型號的計算器的數(shù)量不得少于5個,問:商店應怎樣進貨,才能使所獲利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:m2﹣n2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若x2+x﹣1的值為0,則代數(shù)式x3+2x2+2007的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是

查看答案和解析>>

同步練習冊答案