(2006,吉林)如圖,口袋中有5張完全相同的卡片,分別寫有1cm,2cm,3cm,4cm和5cm,口袋外有2張卡片,分別寫有4cm和5cm.現(xiàn)隨機(jī)從袋內(nèi)取出一張卡片,與口袋外兩張卡片放在一起,以卡片上的數(shù)量分別作為三條線段的長度,回答下列問題:

(1)求這三條線段能構(gòu)成三角形的概率;

(2)求這三條線段能構(gòu)成直角三角形的概率;

(3)求這三條線段能構(gòu)成等腰三角形的概率.

答案:4/5;1.5;2/5
解析:

解:(1)

(2)

(3)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請?zhí)骄浚航?jīng)過點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•吉林)如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)E坐標(biāo)為(4,0),頂點(diǎn)G坐標(biāo)為(0,2).將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM與GF交于點(diǎn)A.
(1)判斷△OGA和△OMN是否相似,并說明理由;
(2)求過點(diǎn)A的反比例函數(shù)解析式;
(3)設(shè)(2)中的反比例函數(shù)圖象交EF于點(diǎn)B,求直線AB的解析式;
(4)請?zhí)剿鳎呵蟪龅姆幢壤瘮?shù)的圖象,是否經(jīng)過矩形OEFG的對稱中心,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年吉林省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•吉林)如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0)(如圖1).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)當(dāng)AH=HC時(shí),求直線FC的解析式;
(3)當(dāng)α=90°時(shí),(如圖2).請?zhí)骄浚航?jīng)過點(diǎn)D,且以點(diǎn)B為頂點(diǎn)的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年吉林省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•吉林)如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.

查看答案和解析>>

同步練習(xí)冊答案