在Rt△ABC,∠A=90°,AB=6,AC=8,以斜邊BC的中心為旋轉中心,把△ABC逆時針方向旋轉90°至△DEF,則重疊部分的面積是   
【答案】分析:根據SRQPS=S△RQC-S△PSC,依據相似三角形的性質,面積的比等于相似比的平方,即可求解.
解答:解:根據旋轉的性質可知,△PSC∽△RSF∽△RQC,△PSC≌△QFP,
∵∠A=90°,AB=6,AC=8,
∴BC=10,PC=5,S△ABC=24,
∵S△PSC:S△ABC=1:4,即S△PSC=6,
∴PS=PQ=,
∴QC=
∴S△RQC:S△ABC=QC2:BC2,
SRQPS=S△RQC-S△PSC=9.
故答案為:9.
點評:本題考查旋轉的性質.旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點-旋轉中心;②旋轉方向;③旋轉角度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、在Rt△ABC中,斜邊AB=2,則AB2+AC2+BC2等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠ACB=90°,D、E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,AC=5cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,若cosA=
12
,那么sinA=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,如果b:a=1:
2
,那么cosB=
 
,sinA=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,a=10,S△ABC=
50
3
3
,則∠A=
 
度.

查看答案和解析>>

同步練習冊答案