【題目】閱讀下面材料,并解決有關(guān)問題
我們知道:
|a|=
現(xiàn)在我們可以用這一結(jié)論來化解含有絕對(duì)值的代數(shù)式
如化簡代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1和x=2(稱﹣1,2分別為|x+1|和|x﹣2|的零點(diǎn)值)
在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下三種情況:
(1)x<﹣1(2)﹣1≤x<2(3)x≥2
從而化簡代數(shù)式|x+1|+|x﹣2|,可分以下三種情況
(1)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1
(2)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3
(3)x≥2時(shí),原式=x+1+x﹣2=2x﹣1
通過以上閱讀,請(qǐng)你解決以下問題
(1)化簡代數(shù)式|x+2|+|x﹣4|
(2)求|x﹣1|﹣4|x+1|的最大值.
【答案】(1)當(dāng)x<﹣2時(shí),|x+2|+|x﹣4|=﹣2x+2;當(dāng)﹣2≤x<4時(shí),|x+2|+|x﹣4|=6;當(dāng)x≥4時(shí),|x+2|+|x﹣4|=2x﹣2;(2)2.
【解析】
(1)分為x<﹣2、﹣2≤x<4、x≥4三種情況化簡即可;
(2)分x<﹣1、﹣1≤x≤1、x>1分別化簡,結(jié)合x的取值范圍確定代數(shù)式值的范圍,從而求出代數(shù)式的最大值.
解:(1)當(dāng)x<﹣2時(shí),|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;
當(dāng)﹣2≤x<4時(shí),|x+2|+|x﹣4|=x+2+4﹣x=6;
當(dāng)x≥4時(shí),|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;
(2)當(dāng)x<﹣1時(shí),原式=3x+5<2,
當(dāng)﹣1≤x≤1時(shí),原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,
當(dāng)x>1時(shí),原式=﹣3x﹣5<﹣8,
則|x﹣1|﹣4|x+1|的最大值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D、E分別在BC、AC上,且BD=CE,連接AD,BE交于點(diǎn)F;
(1)求∠AFE的度數(shù);
(2)連接FC,若∠AFC=90°,BF=1,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,連接DE交AC于點(diǎn)F.
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.
(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由一些火柴棒搭成的圖案:
(1)擺第①個(gè)圖案用 根火柴棒,擺第②個(gè)圖案用 根火柴棒,擺第③個(gè)圖案用 根火柴棒.
(2)按照這種方式擺下去,擺第n個(gè)圖案用多少根火柴棒?
(3)計(jì)算一下擺121根火柴棒時(shí),是第幾個(gè)圖案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請(qǐng)判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=60°,C是BO延長線上一點(diǎn),OC=12cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CB以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OA以1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=_____s時(shí),△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD∥GE,AQ 平分∠FAC,交 BD 于 Q,∠GFA=50°,∠Q=25°,則∠ACB 的 度數(shù)( )
A. 90° B. 95° C. 100° D. 105°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com