【題目】閱讀下面材料,并解決有關問題

我們知道:

|a|

現(xiàn)在我們可以用這一結論來化解含有絕對值的代數(shù)式

如化簡代數(shù)式|x+1|+|x2|時,可令x+10x20,分別求得x=﹣1x2(稱﹣12分別為|x+1||x2|的零點值)

在實數(shù)范圍內(nèi),零點值x=﹣1x2可將全體實數(shù)分成不重復且不遺漏的如下三種情況:

1x<﹣12)﹣1x23x2

從而化簡代數(shù)式|x+1|+|x2|,可分以下三種情況

1x<﹣1時,原式=﹣(x+1)﹣(x2)=﹣2x+1

2)﹣1x2時,原式=x+1﹣(x2)=3

3x2時,原式=x+1+x22x1

通過以上閱讀,請你解決以下問題

1)化簡代數(shù)式|x+2|+|x4|

2)求|x1|4|x+1|的最大值.

【答案】1)當x<﹣2時,|x+2|+|x4|=﹣2x+2;當﹣2x4時,|x+2|+|x4|6;當x4時,|x+2|+|x4|2x2;(22

【解析】

1)分為x<﹣2、﹣2x4x4三種情況化簡即可;

2)分x<﹣1、﹣1x1、x1分別化簡,結合x的取值范圍確定代數(shù)式值的范圍,從而求出代數(shù)式的最大值.

解:(1)當x<﹣2時,|x+2|+|x4|=﹣x2+4x=﹣2x+2;

當﹣2x4時,|x+2|+|x4|x+2+4x6;

x4時,|x+2|+|x4|x+2+x42x2;

2)當x<﹣1時,原式=3x+52,

當﹣1x1時,原式=﹣5x3,﹣8≤﹣5x32,

x1時,原式=﹣3x5<﹣8

|x1|4|x+1|的最大值為2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,點D、E分別在BC、AC上,且BD=CE,連接AD,BE交于點F;

1)求∠AFE的度數(shù);

2)連接FC,若∠AFC=90°,BF=1,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,ADBC,垂足為點D,AN是ABC外角CAM的平分線,CEAN,垂足為點E,連接DE交AC于點F.

(1)求證:四邊形ADCE為矩形;

(2)當ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?

(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點,BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,D為邊AC的中點,AEEC,BDEC

1)求證:BDA≌△CEA;

2)請判斷ADE是什么三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB60°,CBO延長線上一點,OC12cm,動點P從點C出發(fā)沿CB2cm/s的速度移動,動點Q從點O出發(fā)沿OA1cm/s的速度移動,如果點P、Q同時出發(fā),用ts)表示移動的時間,當t_____s時,△POQ是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BDGE,AQ 平分∠FAC,交 BD Q,GFA=50°,Q=25°,則∠ACB 度數(shù)( )

A. 90° B. 95° C. 100° D. 105°

查看答案和解析>>

同步練習冊答案