【題目】閱讀下面材料,并解決有關問題
我們知道:
|a|=
現(xiàn)在我們可以用這一結論來化解含有絕對值的代數(shù)式
如化簡代數(shù)式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1和x=2(稱﹣1,2分別為|x+1|和|x﹣2|的零點值)
在實數(shù)范圍內(nèi),零點值x=﹣1和x=2可將全體實數(shù)分成不重復且不遺漏的如下三種情況:
(1)x<﹣1(2)﹣1≤x<2(3)x≥2
從而化簡代數(shù)式|x+1|+|x﹣2|,可分以下三種情況
(1)x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1
(2)﹣1≤x<2時,原式=x+1﹣(x﹣2)=3
(3)x≥2時,原式=x+1+x﹣2=2x﹣1
通過以上閱讀,請你解決以下問題
(1)化簡代數(shù)式|x+2|+|x﹣4|
(2)求|x﹣1|﹣4|x+1|的最大值.
【答案】(1)當x<﹣2時,|x+2|+|x﹣4|=﹣2x+2;當﹣2≤x<4時,|x+2|+|x﹣4|=6;當x≥4時,|x+2|+|x﹣4|=2x﹣2;(2)2.
【解析】
(1)分為x<﹣2、﹣2≤x<4、x≥4三種情況化簡即可;
(2)分x<﹣1、﹣1≤x≤1、x>1分別化簡,結合x的取值范圍確定代數(shù)式值的范圍,從而求出代數(shù)式的最大值.
解:(1)當x<﹣2時,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;
當﹣2≤x<4時,|x+2|+|x﹣4|=x+2+4﹣x=6;
當x≥4時,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;
(2)當x<﹣1時,原式=3x+5<2,
當﹣1≤x≤1時,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,
當x>1時,原式=﹣3x﹣5<﹣8,
則|x﹣1|﹣4|x+1|的最大值為2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D、E分別在BC、AC上,且BD=CE,連接AD,BE交于點F;
(1)求∠AFE的度數(shù);
(2)連接FC,若∠AFC=90°,BF=1,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,連接DE交AC于點F.
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖是由一些火柴棒搭成的圖案:
(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.
(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?
(3)計算一下擺121根火柴棒時,是第幾個圖案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=60°,C是BO延長線上一點,OC=12cm,動點P從點C出發(fā)沿CB以2cm/s的速度移動,動點Q從點O出發(fā)沿OA以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間,當t=_____s時,△POQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD∥GE,AQ 平分∠FAC,交 BD 于 Q,∠GFA=50°,∠Q=25°,則∠ACB 的 度數(shù)( )
A. 90° B. 95° C. 100° D. 105°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com