如圖是一個形如正六邊形的點(diǎn)陣,它的中心是一個點(diǎn),算第一層,第二層每邊有兩個點(diǎn),第三層每邊有三個點(diǎn),…,依此類推.
(1)填寫下表:
層數(shù)1234
該層對應(yīng)的點(diǎn)數(shù)161218
所有層的總點(diǎn)數(shù)1________________________
(2)寫出第n層所對應(yīng)的點(diǎn)數(shù)(n≥2);
(3)寫出n層的正六邊形點(diǎn)陣的總點(diǎn)數(shù)(n≥2);
(4)如果點(diǎn)陣中所有層的總點(diǎn)數(shù)為331,請求出它共有幾層?

解:(1)如表:

(2)第一層上的點(diǎn)數(shù)為1;
第二層上的點(diǎn)數(shù)為6=1×6;
第三層上的點(diǎn)數(shù)為6+6=2×6;
第四層上的點(diǎn)數(shù)為6+6+6=3×6;
…;
第n層上的點(diǎn)數(shù)為(n-1)×6=6n-6.

(3)第二層開始,每增加一層就增加六個點(diǎn),即n層六邊形點(diǎn)陣的總點(diǎn)數(shù)為,
1+1×6+2×6+3×6+…+(n-1)×6,
=1+6[1+2+3+4+…+(n-1)],
=1+6×,
=1+3n(n-1).
第n層六邊形的點(diǎn)陣的總點(diǎn)數(shù)為:1+3n(n-1)=3n2-3n+1.

(4)令3n2-3n+1=331
解得:n=-10(舍去)或n=11
答:共有11層.
分析:(1)觀察點(diǎn)陣可以寫出答案;
(2)觀察可知,從第二層開始,每增加一層就增加六個點(diǎn);
(3)將每一層的點(diǎn)數(shù)相加后即可得到答案.
(4)將331代入后解方程即可.
點(diǎn)評:本題主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、正方體是特殊的長方體,又稱“立方體”、“正六面體”.
(1)正方體是由
6
個面圍成的,它有
8
個頂點(diǎn),
12
條棱
(2)用一個平面去截一個正方體,截面可能是幾邊形?(寫出所有可能的情況)
(3)如圖是由幾個小正方體所搭幾何體的俯視圖,小正方形中的數(shù)字表示該位置的小正方體的個數(shù).請你畫出這個幾何體的主視圖、左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題:探究能拼成正多邊形的三角形的面積計算公式.
實(shí)驗(yàn):
(1)如圖1,三角形的三邊長分別為a、b、c,∠A=60°,現(xiàn)將六個這樣的三角形(設(shè)面積為S6)拼成一個六邊形,由于大六邊形三個角都是∠B+∠C=120°,所以由a邊圍成了一個大的正六邊形,其面積可計算出為
 
;由于所圍成的小六邊形的邊長都是
 
,其面積為
 
,由此可得S6=
 

(2)如圖2,三角形的三邊長分別為a、b、c,∠A=120°,試用這樣的三角形拼成一個正三角形(設(shè)面積為S3),先畫出這個正三角形,再推出S3的計算公式;
推廣:
(3)對于三角形的三邊長分別為a、b、c,當(dāng)∠A取什么值時,能拼成一個任意正n邊形嗎?如果能,試寫出∠A和三角形的面積Sn的表達(dá)式;如果不能,請簡要說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題:探究能拼成正多邊形的三角形的面積計算公式.

1.如圖1,三角形的三邊長分別為a、b、c,∠A=60°,現(xiàn)將六個這樣的三角形(設(shè)面積為)拼成一個六邊形,由于大六邊形三個角都是∠B+∠C=120°,所以由a邊圍成了一個大的正六邊形,其面積可計算出為          ;由于所圍成的小六邊形的邊長都是        ,其面積為            ,由此可得                   .

2.如圖2, 三角形的三邊長分別為a、b、c,∠A=120°,試用這樣的三角形拼成一個正三角形(設(shè)面積為),先畫出這個正三角形,再推出的計算公式;

3.推廣:

對于三角形的三邊長分別為a、b、c,當(dāng)∠A取什么值時,能拼成一個任意正邊形嗎?如果能,試寫出∠A和三角形的面積的表達(dá)式;如果不能,請簡要說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江西省中等學(xué)校招生統(tǒng)一考試數(shù)學(xué)卷(二) 題型:解答題

課題:探究能拼成正多邊形的三角形的面積計算公式.
【小題1】如圖1,三角形的三邊長分別為a、b、c,∠A=60°,現(xiàn)將六個這樣的三角形(設(shè)面積為)拼成一個六邊形,由于大六邊形三個角都是∠B+∠C=120°,所以由a邊圍成了一個大的正六邊形,其面積可計算出為         ;由于所圍成的小六邊形的邊長都是       ,其面積為           ,由此可得                   .
【小題2】如圖2, 三角形的三邊長分別為a、b、c,∠A=120°,試用這樣的三角形拼成一個正三角形(設(shè)面積為),先畫出這個正三角形,再推出的計算公式;
【小題3】推廣:
對于三角形的三邊長分別為a、b、c,當(dāng)∠A取什么值時,能拼成一個任意正邊形嗎?如果能,試寫出∠A和三角形的面積的表達(dá)式;如果不能,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江西省等學(xué)校招生統(tǒng)一考試數(shù)學(xué)卷(二) 題型:解答題

課題:探究能拼成正多邊形的三角形的面積計算公式.

1.如圖1,三角形的三邊長分別為a、b、c,∠A=60°,現(xiàn)將六個這樣的三角形(設(shè)面積為)拼成一個六邊形,由于大六邊形三個角都是∠B+∠C=120°,所以由a邊圍成了一個大的正六邊形,其面積可計算出為          ;由于所圍成的小六邊形的邊長都是        ,其面積為            ,由此可得                    .

2.如圖2, 三角形的三邊長分別為a、b、c,∠A=120°,試用這樣的三角形拼成一個正三角形(設(shè)面積為),先畫出這個正三角形,再推出的計算公式;

3.推廣:

對于三角形的三邊長分別為a、b、c,當(dāng)∠A取什么值時,能拼成一個任意正邊形嗎?如果能,試寫出∠A和三角形的面積的表達(dá)式;如果不能,請簡要說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案