【題目】(本題滿分10分)如圖①,一條筆直的公路上有A、B、C三地,B.C兩地相距150千米,甲、乙兩輛汽車分別從B、C兩地同時出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2(千米)與行駛時間x(時)的關(guān)系如圖②所示.根據(jù)圖像進(jìn)行以下探究:
(1)請在圖①中標(biāo)出A地的位置,并作簡要的文字說明;
(2)求圖②中M點的坐標(biāo),并解釋該點的實際意義;
(3)在圖②中補(bǔ)全甲車的函數(shù)圖像,求甲車到A地的距離y1與行駛時間x的函數(shù)表達(dá)式;
(4)A地設(shè)有指揮中心,指揮中心及兩車都配有對講機(jī),兩部對講機(jī)在15千米之內(nèi)(含15千米)時能夠互相通話,求兩車可以同時與指揮中心用對講機(jī)通話的時間.
【答案】(1)A地位置如圖所示.使點A滿足AB:AC=2:3;
(2)M(1.2,0),點M表示乙車1.2小時到達(dá)A地;
(3)作圖見試題解析,;
(4)小時.
【解析】
試題(1)先根據(jù)題意作出圖形,根據(jù)圖形的特征即可得到結(jié)果;
(2)先根據(jù)題意求得乙車的速度,再求出M點對應(yīng)的時間,即可得到結(jié)果;;
(3)根據(jù)待定系數(shù)法即可求得結(jié)果;
(4)根據(jù)“兩部對講機(jī)在15千米之內(nèi)(含15千米)時能夠互相通話”作為不等關(guān)系列不等式組,即可求得通話的時間范圍,從而求得結(jié)果.
(1)A 地位置如圖所示:
使點A滿足AB∶AC=2∶3;
(2)乙車的速度150÷2=75千米/時,
,
∴M(1.2,0)
∴點 M表示乙車 1.2 小時到達(dá) A地;
(3)甲車的函數(shù)圖象如圖所示:
當(dāng)時,;
當(dāng)時,.
(4)由題意得,
解得;
,
解得.
∴
∴兩車同時與指揮中心通話的時間為小時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 某種彩票中獎的概率是,買1000張該種彩票一定會中獎
B. 了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查
C. 若甲組數(shù)據(jù)方差=0.39,乙組數(shù)據(jù)方差=0.27,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
D. 在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P為AD上一動點,則PE+PC的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號設(shè)備的價格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F(xiàn),則圖中陰影部分的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,B的坐標(biāo)分別為(-4,5),(-2,1).
(1)寫出點C及點C關(guān)于y軸對稱的點C′的坐標(biāo);
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點為圓心,以這點到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語言敘述)
寫出證明過程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過的下列四邊形中哪些是圓外切四邊形 (填序號)
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是 .
③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應(yīng)降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設(shè)某商場每件襯衫應(yīng)降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進(jìn)行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com