如圖所示,已知AB是⊙O的直徑,BC是⊙O的切線,OC平行于弦AD,過點(diǎn)D作DE⊥AB于點(diǎn)E,連接AC,與DE交于點(diǎn)P.問EP與PD是否相等?證明你的結(jié)論.

【答案】分析:解答此題的關(guān)鍵是利用AB是⊙O的直徑,BC是切線,求證Rt△AEP∽R(shí)t△ABC和Rt△AED∽R(shí)t△OBC,然后利用其對應(yīng)邊成比例即可得出結(jié)論.
解答:解:DP=PE.證明如下:
∵AB是⊙O的直徑,BC是切線,
∴AB⊥BC.
∴DE∥BC,
∴Rt△AEP∽R(shí)t△ABC,得.①
又∵AD∥OC,∴∠DAE=∠COB,
∴Rt△AED∽R(shí)t△OBC.

由①,②得ED=2EP.
∴DP=PE.
點(diǎn)評:此題主要考查學(xué)生對相似三角形的判定與性質(zhì)和切線的判定與性質(zhì)的理解和掌握,此題的關(guān)鍵是求證Rt△AEP∽R(shí)t△ABC,Rt△AED∽R(shí)t△OBC,此題屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AB是圓O的直徑,圓O過BC的中點(diǎn)D,且DE⊥AC.
(1)求證:DE是圓O的切線;
(2)若∠C=30°,CD=10cm,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AB是半圓O的直徑,弦CD∥AB,AB=10,CD=6,E是AB延長線上一點(diǎn),BE=
103
.判斷直線DE與半圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AB是半圓O的直徑,弦CD∥AB,AB=10,CD=6,E是AB延長線上一點(diǎn),BE=
10
3

(1)求
OD
OE
;
(2)證明:直線DE是半圓O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知AB是⊙O的直徑,直線L與⊙O相切于點(diǎn)C,
AC
=
AD
,CD交AB于E,BF⊥直線L,垂足精英家教網(wǎng)為F,BF交⊙O于C.
(1)圖中哪條線段與AE相等?試證明你的結(jié)論;
(2)若sin∠CBF=
5
5
,AE=4,求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AB是⊙O的直徑,BC是⊙O的切線,OC平行于弦AD,過點(diǎn)D作DE⊥AB于點(diǎn)E,連接AC,與DE交于點(diǎn)P.問EP與PD是否相等?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案