如圖二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、C三點(diǎn).
(1)觀察圖象,寫出A、B、C三點(diǎn)的坐標(biāo),并求出拋物線解析式;
(2)求此拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)觀察圖象,當(dāng)x取何值時(shí),y<0,y=0,y>0.
【答案】分析:(1)直接利用圖中的三個(gè)點(diǎn)的坐標(biāo)代入解析式用待定系數(shù)法求解析式;
(2)把解析式化為頂點(diǎn)式求頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)依據(jù)圖象可知,當(dāng)圖象在x軸上方時(shí),y>0,在x軸下方時(shí),y<0,在x軸上時(shí),y=0.
解答:解:(1)A(-1,0),B(0,-3),C(4,5),
設(shè)解析式為y=ax2+bx+c,
代入可得:
解得:
故解析式為:y=x2-2x-3;

(2)y=x2-2x-3=(x-1)2-4,
故頂點(diǎn)坐標(biāo)為:(1,-4),對(duì)稱軸為直線x=1;

(3)觀察圖象可得:當(dāng)x<-1或x>3時(shí),y>0,
當(dāng)x=-1或x=3時(shí),y=0,
當(dāng)-1<x<3時(shí),y<0.
點(diǎn)評(píng):主要考查了用待定系數(shù)法求二次函數(shù)的解析式和二次函數(shù)及其圖象的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年山東煙臺(tái)海陽市九年級(jí)上期末數(shù)學(xué)試卷(解析版) 題型:填空題

二次函數(shù)y=ax+bx+c的圖像如圖所示,則不等式ax+bx+c>0的解集是            

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過點(diǎn)C(0,4),設(shè)拋物線的頂點(diǎn)為D。

(1)若拋物線經(jīng)過點(diǎn)(1,-6),求二次函數(shù)的解析式;

(2)若a=1時(shí),試判斷拋物線與x軸交點(diǎn)的個(gè)數(shù);

(3)如圖所示A、B是⊙P上兩點(diǎn),AB=8,AP=5。且拋物線過點(diǎn)A(x1,y1),B(x2,y2),并有AD=BD。設(shè)⊙P上一動(dòng)點(diǎn)E(不與A、B重合),且∠AEB為銳角,若<a≤1時(shí),請(qǐng)判斷∠AEB與∠ADB的大小關(guān)系,并說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇鹽城亭湖區(qū)九年級(jí)下學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖11,已知○為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°,且點(diǎn)A的坐標(biāo)為(2,0).

1.求點(diǎn)B的坐標(biāo)

2.若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點(diǎn),求此二次函數(shù)的解析式;

3.在(2)中的二次函數(shù)圖象的OB段(不包括點(diǎn)O、B)上,是否存在一點(diǎn)C,使得四邊形ABCO的面積最大?若存在,求出這個(gè)最大值及此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案