如圖,已知拋物線與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

(1)若拋物線過點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;

(2)在(1)的條件下,解答下列問題:

①求出△BCE的面積;

②在拋物線的對(duì)稱軸上找一點(diǎn)P,使CP+EP的值最小,求出點(diǎn)P的坐標(biāo).

 

【答案】

(1)a=4;(2)①6;②P(-1,).

【解析】

試題分析:(1)將點(diǎn)(-2,-2)代入拋物線的解析式,即可求出a的值;(2)①令y=0,代入拋物線解析式,即可求出相應(yīng)的x的值,從而求出點(diǎn)B、C的坐標(biāo),令x=0,代入拋物線解析式,可求出對(duì)應(yīng)的y的值,從而求出點(diǎn)E的坐標(biāo),然后利用三角形面積公式,即可求得△BCE的面積;②由于點(diǎn)B、C關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以連接BE,交對(duì)稱軸于點(diǎn)P,此交點(diǎn)即為所求的位置,此時(shí),BE的值就是PC+PE的最小值,由于點(diǎn)B、E的坐標(biāo)已求出,所以可用待定系數(shù)法求得直線BE的解析式,從而求出點(diǎn)P的坐標(biāo).

試題解析:(1)∵點(diǎn)M(-2,-2)在拋物線上,

,

解得:

(2)①由(1)得拋物線解析式為,

時(shí),得:

解得:,

∵點(diǎn)B在點(diǎn)C的左側(cè),

∴B(﹣4,0),C(2,0),

,

當(dāng)時(shí),得:

∴E(0,-2),

,

②由拋物線解析式,得對(duì)稱軸為直線,

根據(jù)C與B關(guān)于拋物線對(duì)稱軸直線對(duì)稱,連接BE,與對(duì)稱軸交于點(diǎn)P,即為所求,

設(shè)直線BE解析式為,

將B(﹣4,0),E(0,-2)代入得:,

解得:

∴直線BE解析式為,

代入,

得:,

∴P(﹣1,).

考點(diǎn):1、利用軸對(duì)稱求最短距離;2、二次函數(shù)的圖象和性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)點(diǎn)M是直線CD上的一動(dòng)點(diǎn),BM交拋物線于N,是否存在點(diǎn)N是線段BM的中點(diǎn),如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,3),且對(duì)稱軸方程為x=1
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),E(3,0),與y軸交于點(diǎn)B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點(diǎn)坐標(biāo)是(
 
,
 
);
(2)求該拋物線的解析式和B點(diǎn)的坐標(biāo);
(3)設(shè)拋物線頂點(diǎn)是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關(guān)于x軸對(duì)稱,請(qǐng)直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個(gè)交點(diǎn)A(1,0),對(duì)稱軸是x=-1,則該拋物線與x軸的另一交點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在坐標(biāo)平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請(qǐng)直接寫出符合要求的,并在第一象限的點(diǎn)G的坐標(biāo);
(3)將拋物線沿其對(duì)稱軸平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?

查看答案和解析>>

同步練習(xí)冊(cè)答案