【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a>0)與x軸的正半軸交于A,C兩點(點A在點C右側(cè)),與y軸正半軸交于點B,連結(jié)BC,將△BOC沿直線BC翻折,若點O恰好落在線段AB上,則稱該拋物線為”折點拋物線”,下列拋物線是“折點拋物線”的是( )
A.B.
C.D.
【答案】B
【解析】
觀察函數(shù)圖像,可知拋物線與x軸有兩個交點,則b2-4ac>0,因此可以排除A;再由B選項中的y=0,解關(guān)于x的方程,求出x的值,可得到點A,C的坐標,從而可求出AC的長,由題意可知OC=O'C=1,OB=O'B=3,再利用勾股定理求出AB的長,即可得到AO'的長,然后利用勾股定理的逆定理進行驗證,可得答案,或求出一次函數(shù)BA的解析式,再求出點O'的坐標,將點O'的橫坐標代入函數(shù)解析式,求出其縱坐標,即可得出答案.
A. 當y=0時,
∴9x2-33x+32=0
b2-4ac=332-4×9×32=-63<0,
∴拋物線與x軸無交點,故A不符合題意;
B. 當y=0時,
解得x1=1,x2=
∴A(,0),C(1,0)
當x=0時,y=3
∴點B(0,3)
∵將△BOC沿直線BC翻折,若點O恰好落在線段AB上,
∴OC=O'C=1,OB=O'B=3
在Rt△ABO中,
∴AO'=
又∵AC=
∵,
∴
∴∠AO'C=90°=∠BO'C
∴B、O'、A三點共線
∴將△BOC沿直線BC翻折,點O恰好落在線段AB上,
∴“折點拋物線”為
同理可判斷C、D均不是“折點拋物線”.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點C(1,2)分別作x軸、y軸的平行線,交直線y=-x+6于A,B兩點,若反比例函數(shù) (x>0)的圖像與△ABC有公共點,則k的取值范圍是( )
A. 2≤k≤8 B. 2≤k≤9 C. 2≤k≤5 D. 5≤k≤8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=1,將菱形OABC繞原點順時針旋轉(zhuǎn)105°至OA'B′C'的位置,則點B'的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.
(1)當k取何值時,方程有兩個不相等的實數(shù)根?
(2)在(1)的條件下,若k是滿足條件的最小整數(shù),求方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點且與AC的另一個交點為F.
(1)求證:DE是⊙O的切線;
(2)AB=12,∠BAC=60°,求線段DE,EF與所圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=62°,∠APD=86°.
(1)求∠B的大。
(2)已知AD=6,求圓心O到BD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線與一次函數(shù)的圖象相交于,兩點,點是拋物線上不與,重合的一個動點.
(1)請求出,,的值;
(2)當點在直線上方時,過點作軸的平行線交直線于點,設(shè)點的橫坐標為,的長度為,求出關(guān)于的解析式;
(3)在(2)的基礎(chǔ)上,設(shè)面積為,求出關(guān)于的解析式,并求出當取何值時,取最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了這樣一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CD⊥AB于點E,AE=1寸,CD=10寸,求直徑AB的長.
請你解答這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當MN∥B′D′ 時,解答下列問題:
(1)求證:△AB′M≌△AD′N;
(2)求α的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com