(2013•日照)已知一元二次方程x2-x-3=0的較小根為x1,則下面對(duì)x1的估計(jì)正確的是( 。
分析:求出方程的解,求出方程的最小值,即可求出答案.
解答:解:x2-x-3=0,
b2-4ac=(-1)2-4×1×(-3)=13,
x=
13
2
,
方程的最小值是
1-
13
2

∵3<
13
<4,
∴-3>-
13
>-4,
∴-
3
2
>-
13
2
>-2,
1
2
-
3
2
1
2
-
13
2
1
2
-2,
∴-1>
1-
13
2
>-
3
2

故選A.
點(diǎn)評(píng):本題考查了求一元二次方程的解和估算無(wú)理數(shù)的大小的應(yīng)用,關(guān)鍵是求出方程的解和能估算無(wú)理數(shù)的大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照)已知m2-m=6,則1-2m2+2m=
-11
-11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照)如圖,已知四邊形ABDE是平行四邊形,C為邊BD延長(zhǎng)線上一點(diǎn),連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照)問題背景:
如圖(a),點(diǎn)A、B在直線l的同側(cè),要在直線l上找一點(diǎn)C,使AC與BC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′,連接A B′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.

(1)實(shí)踐運(yùn)用:
如圖(b),已知,⊙O的直徑CD為4,點(diǎn)A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),則BP+AP的最小值為
2
2
2
2

(2)知識(shí)拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,E、F分別是線段AD和AB上的動(dòng)點(diǎn),求BE+EF的最小值,并寫出解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照)已知,如圖(a),拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(x1,0),B(x2,0),C(0,-2),其頂點(diǎn)為D.以AB為直徑的⊙M交y軸于點(diǎn)E、F,過(guò)點(diǎn)E作⊙M的切線交x軸于點(diǎn)N.∠ONE=30°,|x1-x2|=8.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)連結(jié)AD、BD,在(1)中的拋物線上是否存在一點(diǎn)P,使得△ABP與△ADB相似(除去全等這一情況)?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(3)如圖(b),點(diǎn)Q為
EBF
上的動(dòng)點(diǎn)(Q不與E、F重合),連結(jié)AQ交y軸于點(diǎn)H,問:AH•AQ是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案