【題目】如圖,在正方形ABCD中,E為AB邊上一點(diǎn),連接DE,將△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△CDF,作點(diǎn)F關(guān)于CD的對(duì)稱(chēng)點(diǎn),記為點(diǎn)G,連接DG.
(1)依題意在圖1中補(bǔ)全圖形;
(2)連接BD,EG,判斷BD與EG的位置關(guān)系并在圖2中加以證明;
(3)當(dāng)點(diǎn)E為線段AB的中點(diǎn)時(shí),直接寫(xiě)出∠EDG的正切值.
【答案】(1)補(bǔ)圖見(jiàn)解析;(2)BD⊥EG.證明見(jiàn)解析;(3)
【解析】(1)由已知條件補(bǔ)全圖形即可;(2)畫(huà)出圖形后利用旋轉(zhuǎn)的性質(zhì)即可證出BD⊥EG于M;(3)當(dāng)點(diǎn)E為線段AB的中點(diǎn)時(shí)直接寫(xiě)出∠EDG的正切值即可.
解:(1)依題意補(bǔ)全圖形如圖1:
(2)判斷: BD⊥EG.
證明:如圖2,BD,EG交于M,
∵正方形ABCD,∴AB=BC,∠DAE=∠DCB =90°
由旋轉(zhuǎn)可得△ADE≌△CDF,DE=DF,AE=CF
∴∠DCF = ∠DAE =∠DCB =90° ∴點(diǎn)B,C,F(xiàn)在一條直線上.
∵點(diǎn)G與點(diǎn)F關(guān)于CD的對(duì)稱(chēng)
∴△DCG≌△DCF,DG=DF,CG=CF
∴DE=DG,AE=CG
∴BE=BG
∴BD⊥EG于M.
(3)∠EDG的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知鈍角△ABC,老師按照如下步驟尺規(guī)作圖:
步驟1:以C為圓心,CA為半徑畫(huà)、;
步驟2:以B為圓心,BA為半徑畫(huà)、,交、儆邳c(diǎn)D;
步驟3:連接AD,交BC延長(zhǎng)線于點(diǎn)H .
小明說(shuō):圖中的BH⊥AD且平分AD.
小麗說(shuō):圖中AC平分∠BAD.
小強(qiáng)說(shuō):圖中點(diǎn)C為BH的中點(diǎn).
他們的說(shuō)法中正確的是___________.他的依據(jù)是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把直線a沿箭頭方向平移1.5cm得直線b,這兩條直線之間的距離是( )
A.1.5cm
B.3cm
C.0.75cm
D.cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【閱讀理解】
我們知道,1+2+3+…+n=,那么12+22+32+…+n2結(jié)果等于多少呢?
在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個(gè)圓圈中數(shù)的和為2+2,即22,…;第n行n個(gè)圓圈中數(shù)的和為,即n2,這樣,該三角形數(shù)陣中共有個(gè)圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2.
【規(guī)律探究】
將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個(gè)圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中數(shù)的和均為 ,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為:3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .
【解決問(wèn)題】
根據(jù)以上發(fā)現(xiàn),計(jì)算: 的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在下列橫線上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.
① ________;②________;③________;④________.
(2)通過(guò)拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請(qǐng)用數(shù)學(xué)式子表示:_________________________;
(3)利用(2)的結(jié)論計(jì)算99992+2×9999×1+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中能用平方差公式是( )
A.(x+y)(y+x)
B.(x+y)(y﹣x)
C.(x+y)(﹣y﹣x)
D.(﹣x+y)(y﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在正是草莓熱銷(xiāo)的季節(jié),某水果零售商店分兩批次從批發(fā)市場(chǎng)共購(gòu)進(jìn)草莓40箱,已知第一、二次進(jìn)貨價(jià)分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設(shè)第一、二次購(gòu)進(jìn)草莓的箱數(shù)分別為a箱、b箱,求a,b的值;
(2)若商店對(duì)這40箱草莓先按每箱60元銷(xiāo)售了x箱,其余的按每箱35元全部售完.
①求商店銷(xiāo)售完全部草莓所獲利潤(rùn)y(元)與x(箱)之間的函數(shù)關(guān)系式;
②當(dāng)x的值至少為多少時(shí),商店才不會(huì)虧本.
(注:按整箱出售,利潤(rùn)=銷(xiāo)售總收入-進(jìn)貨總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,CE∥BD,DE∥AC.
(1)證明:四邊形OCED為菱形;
(2)若AC=4,求四邊形CODE的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com