【題目】王老師將個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個(gè)球(有放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

摸球的次數(shù)

摸到黑球的次數(shù)

摸到黑球的頻率

補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是________(精確到0.01);

估算袋中白球的個(gè)數(shù);

的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計(jì)算他兩次都摸出白球的概率.

【答案】(1)0.25,(2)估算袋中有3個(gè)白球,(3)兩次都摸出白球的概率為.

【解析】

1)用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定到某個(gè)常數(shù)來表示該事件發(fā)生的概率即可;

(2)利用概率公式列出方程求解即可;

(3)列表將所有等可能的結(jié)果列舉出來,然后利用概率公式求解即可.

(1)249÷1000=0.25(精確到0.01);

∵大量重復(fù)試驗(yàn)事件發(fā)生的頻率逐漸穩(wěn)定到0.25附近,

∴估計(jì)從袋中摸出一個(gè)球是黑球的概率是0.25,

故答案填0.25;

(2)設(shè)袋中白球?yàn)?/span>x個(gè),

=0.25,

解得x=3.

答:估計(jì)袋中有3個(gè)白球.

(3)用B代表一個(gè)黑球,W1W2、W3代表白球,將摸球情況列表如下:

總共有16種等可能的結(jié)果,其中兩個(gè)球都是白球的結(jié)果有9.

所以摸到兩個(gè)球都是白球的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自卸車車廂的一個(gè)側(cè)面是矩形ABCD,AB3米,BC0.5米,車廂底部距離地面1.2米.卸貨時(shí),車廂傾斜的角度θ60°,問此時(shí)車廂的最高點(diǎn)A距離地面多少米?(精確到1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華在體育館的看臺(tái)P處進(jìn)行觀測(cè),測(cè)得另一看臺(tái)觀眾A處的俯角為15°,觀眾B處的俯角為60°,已知觀眾A、B所在看臺(tái)的坡度i(tanABC)1,點(diǎn)P、H、BC、A在同一個(gè)平面上,點(diǎn)H、B、C在同一條直線上,且PHHCPH15米.

(1)AB所在看臺(tái)坡角∠ABC____度;

(2)AB兩點(diǎn)間的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABB1,△A1B1B2,…,△An2Bn2Bn1,△An1Bn1Bnn個(gè)全等的等腰三角形,其中AB=2,BB1=1,底邊BB1,B1B2,…,Bn2Bn1,Bn1Bn在同一條直線上,連接ABnAn2Bn1于點(diǎn)P,則PBn1的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB在平面直角坐標(biāo)系中,已知:B0,),點(diǎn)Ax軸的正半軸上,OA=3,∠BAD=30°,將△AOB沿AB翻折,點(diǎn)O到點(diǎn)C的位置,連接CB并延長交x軸于點(diǎn)D

1)求點(diǎn)D的坐標(biāo);

2)動(dòng)點(diǎn)P從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度沿x軸的正方向運(yùn)動(dòng),當(dāng)△PAB為直角三角形時(shí),求t的值;

3)在(2)的條件下,當(dāng)△PAB為以∠PBA為直角的直角三角形時(shí),在y軸上是否存在一點(diǎn)Q使△PBQ為等腰三角形?如果存在,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若一個(gè)四邊形能被其中的一條對(duì)角線分割成兩個(gè)相似三角形,則稱這個(gè)四邊形為友誼四邊形.我們熟知的平行四邊形就是友誼四邊形

1)如圖1,在4×4的正方形網(wǎng)格中有一個(gè)RtABC,請(qǐng)你在網(wǎng)格中找格點(diǎn)D,使得四邊形ABCD是被AC分割成的友誼四邊形,(要求畫出點(diǎn)D2種不同位置)

2)如圖2,BD平分∠ABC,BD4,BC8,四邊形ABCD是被BD分割成的友誼四邊形,求AB長;

3)如圖3,圓內(nèi)接四邊形ABCD中,∠ABC60,點(diǎn)E的中點(diǎn),連結(jié)BECD于點(diǎn)F,連結(jié)AF,∠DAF30°

①求證:四邊形ABCF友誼四邊形;

②若△ABC的面積為6,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防甲型H1N1,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量ymg)與時(shí)間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問題:

(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關(guān)系式呢?

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,點(diǎn)EAB上,點(diǎn)FCD上,以EF為折痕,將此矩形折疊,使點(diǎn)A和點(diǎn)C重合,點(diǎn)D和點(diǎn)G重合.

(1)求證:四邊形AECF是菱形.

(2)AB5AD3,則菱形AECF的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用如圖1的二維碼可以進(jìn)行身份識(shí)別.某校建立了一個(gè)身份識(shí)別系統(tǒng),圖2是某個(gè)學(xué)生的識(shí)別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,那么可以轉(zhuǎn)換為該生所在班級(jí)序號(hào),其序號(hào)為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號(hào)為,表示該生為5班學(xué)生.表示6班學(xué)生的識(shí)別圖案是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案