【題目】“垃圾分一分,明天美十分”.環(huán)保部門計劃訂制一批垃圾分類宣傳海報,海報版面不小于300平方米,當宣傳海報的版面為300平方米時,價格為80元/平方米.為了支持垃圾分類促進環(huán)保,廣告公司給予以下優(yōu)惠:宣傳海報版面每增加1平方米,每平方米的價格減少0.2元,但不能低于50元/平方米.假設(shè)宣傳海報的版面增加平方米后,總費用為元.
(1)求關(guān)于的函數(shù)表達式;
(2)訂制宣傳海報的版面為多少平方米時總費用最高?最高費用為多少元?
(3)環(huán)保部門希望總費用盡可能低,那么應(yīng)該訂制多少平方米的海報?
【答案】(1) ;(2)訂制宣傳海報350平方米時總費用最高,最高為24500元;(3)應(yīng)該訂制450平方米的海報.
【解析】
(1)根據(jù)題意可以寫出y關(guān)于x的函數(shù)表達式;
(2)根據(jù)(1)中的函數(shù)解析式和x的取值范圍,可以解答本題;
(3)根據(jù)題意和x的取值范圍可以求得應(yīng)該訂制多少平方米的海報,可以使得環(huán)保部門總費用盡可能低.
解:(1)由題意可得,
,
即y關(guān)于x的函數(shù)表達式為y=x2+20x+24000;
(2)∵
∴
∴
∵
此時
∴訂制宣傳海報350平方米時總費用最高,最高為24500元.
(3))∵y=x2+20x+24000=(x50)2+24500,0≤x≤150,
∵時,隨增大而增大,
時,隨增大而減小
∴當時最小, 此時y=22500,x+300=450,
∴應(yīng)該訂制450平方米的海報.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣m﹣1)2+2m(其中m>0)與其對稱軸l相交于點P.與y軸相交于點A(0,m)連接并延長PA、PO,與x軸、拋物線分別相交于點B、C,連接BC將△PBC繞點P逆時針旋轉(zhuǎn),使點C落在拋物線上,設(shè)點C、B的對應(yīng)點分別是點B′和C′.
(1)當m=1時,該拋物線的解析式為: .
(2)求證:∠BCA=∠CAO;
(3)試問:BB′+BC﹣BC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象如圖所示,給出下列結(jié)論:①b2>4ac; ②abc<0;③a<b; ④b+c>3a;⑤方程ax2+bx+c=0的兩根之和的一半大于﹣1.其中,正確的結(jié)論有( 。
A. ①②③⑤B. .①②④⑤C. ①②④D. .①②③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價為6元/千克,到了收獲季節(jié)投入市場銷售時,調(diào)查市場行情后,發(fā)現(xiàn)該蜜柚不會虧本,且每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請說明理由;若不能,應(yīng)定銷售價為多少元時,既能銷售完又能獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
(3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
(1)小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
(3)如圖3,小明將正方形ABCD繞點A繼續(xù)逆時針旋轉(zhuǎn),線段DG與線段BE將相交,交點為H,寫出△GHE與△BHD面積之和的最大值,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我區(qū)某中學開展“社會主義核心價值觀”演講比賽活動,九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問題:
(1)九(1)班復賽成績的中位數(shù)是 分,九(2)班復賽成績的眾數(shù)是 分;
(2)小明同學已經(jīng)算出了九(1)班復賽的平均成績 =85分;方差S2= [(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),請你求出九(2)班復賽的平均成績x2和方差S22;
(3)根據(jù)(2)中計算結(jié)果,分析哪個班級的復賽成績較好?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=﹣1的拋物線y=x2+bx+c與x軸相交于A、B兩點,其中點A的坐標為(﹣3,0).
(1)求點B的坐標;
(2)求二次函數(shù)的解析式;
(3)已知C為拋物線與y軸的交點,設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com