【題目】已知點(diǎn)A、B分別在x軸和y軸上,OAOB,點(diǎn)CAB的中點(diǎn),AB

(1) 如圖1,求的面積.

(2) 如圖2,EF分別為上的動(dòng)點(diǎn),且∠ECF45°,求證:

【答案】1722)見解析

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)即可求解;(2)連接OC,OB上截取OM=AF,連接CM、ME,通過證得△ACF△OCM,得出CM=AF,OCM=ACF,再通過角度的計(jì)算得出∠ECM=∠ECF=45°,得到△ECF≌△ECM,得出ME=EF,然后在RtMOE中通過勾股定理證明.

1)∵OAOB

OA2+OB2=AB2

OAOB AB

2OA2 =AB2

AO=BA=12

SABO=

2)連接OC,OB上截取OM=AF,連接CMME,如圖2,

△AOB, △COA, △OCB均為等腰直角三角形,

∴∠A=B=BOC=45°,OC=AC,

△ACF△OCM

△ACF△OCM,

CM=CF,OCM=ACF,

∠ACO=ACF+ECF+∠OCE=90°∠ECF=45°,

∴∠ACF+∠OCE=45°=∠OCM+∠OCE=∠ECM=∠ECF

△ECF△ECM

△ECF≌△ECM,∴ME=EF

RtMOE中,∠MOE=90°,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo).

2)求出△ABC的面積.

3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得到△ABC′,請(qǐng)?jiān)趫D中畫出△ABC′,并寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】父母恩深重,恩憐無歇時(shí)每年5月的第二個(gè)星期日即為母親節(jié),節(jié)日前夕巴蜀中學(xué)學(xué)生會(huì)計(jì)劃采購(gòu)一批鮮花禮盒贈(zèng)送給媽媽們

1)經(jīng)過和花店賣家議價(jià),可在原標(biāo)價(jià)的基礎(chǔ)上打八折購(gòu)進(jìn)若在花店購(gòu)買80個(gè)禮盒最多花費(fèi)7680,請(qǐng)求出每個(gè)禮盒在花店的最高標(biāo)價(jià)(用不等式解答)

2)后來學(xué)生會(huì)了解到通過大眾點(diǎn)評(píng)美團(tuán)同城配送會(huì)在(1)中花店最高售價(jià)的基礎(chǔ)上降價(jià)25%,學(xué)生會(huì)計(jì)劃在這兩個(gè)網(wǎng)站上分別購(gòu)買相同數(shù)量的禮盒,但實(shí)際購(gòu)買過程中,大眾點(diǎn)評(píng)網(wǎng)上的購(gòu)買價(jià)格比原有價(jià)格上漲m%,購(gòu)買數(shù)量和原計(jì)劃一樣美團(tuán)網(wǎng)上的購(gòu)買價(jià)格比原有價(jià)格下降了m購(gòu)買數(shù)量在原計(jì)劃基礎(chǔ)上增加15m%,最終在兩個(gè)網(wǎng)站的實(shí)際消費(fèi)總額比原計(jì)劃的預(yù)算總額增加了m%,求出m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】模型建立:

(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點(diǎn)C,過AADEDD,過BBEEDE

求證:△BEC≌△CDA

模型應(yīng)用:

(2)已知直線l1y=x+4y軸交與A點(diǎn),將直線l1繞著A點(diǎn)順時(shí)針旋轉(zhuǎn)45°l2,如圖2,求l2的函數(shù)解析式.

(3)如圖3,矩形ABCO,O為坐標(biāo)原點(diǎn),B的坐標(biāo)為(8,6),A、C分別在坐標(biāo)軸上,P是線段BC上動(dòng)點(diǎn),設(shè)PC=m,已知點(diǎn)D在第一象限,且是直線y=2x-6上的一點(diǎn),若△APD是不以A為直角頂點(diǎn)的等腰Rt△,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, , 上一個(gè)動(dòng)點(diǎn),過點(diǎn)交折線于點(diǎn),設(shè)的長(zhǎng)為, 的面積為, 關(guān)于函數(shù)圖象, 兩段組成,如圖所示.

)當(dāng)時(shí),求的長(zhǎng).

求圖中的圖象段的函數(shù)解析式.

)求為何值時(shí), 的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)對(duì)體育活動(dòng)的喜愛情況,某校設(shè)計(jì)了“你最喜歡的體育活動(dòng)是哪一項(xiàng)(僅限一項(xiàng))”的調(diào)查問卷.該校對(duì)本校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的統(tǒng)計(jì)圖的一部分.請(qǐng)根據(jù)以上信息解答以下問題:

(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

(2)請(qǐng)補(bǔ)全圖1并標(biāo)上數(shù)據(jù).

(3)若該校共有學(xué)生900人,請(qǐng)你估計(jì)該校最喜歡跳繩項(xiàng)目的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點(diǎn).

(1)求該拋物線的解析式;

(2)若拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)在拋物線的第二象限圖象上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及PBC的面積最大值;若不存,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校體育課外活動(dòng)興趣小組,開設(shè)了以下體育課外活動(dòng)項(xiàng)目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

1)這次被調(diào)查的學(xué)生共有   人,在扇形統(tǒng)計(jì)圖中“D”對(duì)應(yīng)的圓心角的度數(shù)為   

2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

同步練習(xí)冊(cè)答案