【題目】如圖,在△ABC中,∠ACB=90°CDAB垂足為D,AE平分∠CABCD于點(diǎn)F,交BC于點(diǎn)E,EHAB,垂足為H,連接FH

(1)求證:CF=CE

(2)試判斷四邊形CFHE的形狀,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)四邊形CFHE是菱形.

【解析】

1)如圖,先由直角三角形的性質(zhì)證∠3=5,再由對(duì)頂角相等和等量代換得∠4=5,從而得到CF=CE

2)由角平分線的性質(zhì)定理得CE=EH,又因?yàn)?/span>CF=CE,所以CF=EH,再證CFEH,得平行四邊形CFHE,又因?yàn)?/span>CF=CE,四邊形CFHE是菱形.

(1)證明:如圖

∵∠ACB=90°,CDAB垂足為D,

∴∠1+5=90°,∠2+3=90°,

又∵∠AE平分∠CAB,

∴∠1=2,

∴∠3=5,

∵∠3=4,

∴∠4=5,

CF=CE

(2)四邊形CFHE是菱形

理由:∵AE平分∠CAB,CEAC,EHAB

CE=EH,

(1)CF=CE,

CF=EH

CDAB,EHAB,

∴∠CDB=90°,∠EHB=90°,

∴∠CDB=EB

CDEH,即CFEH

∴四邊形CFHE是平行四邊形.

CF=CE,

∴四邊形CFHE是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M、N是正方形ABCD的邊CD上的兩個(gè)動(dòng)點(diǎn),滿足AM=BN,連接ACBN于點(diǎn)E,連接DEAM于點(diǎn)F,連接CF,若正方形的邊長(zhǎng)為4,則線段CF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是在汛期中防汛指揮部對(duì)某河流做的一星期的水位測(cè)量(單位:

(注:此河流的警戒水位為,“+”表示比河流的警戒水位高,“-”表示比河流的警戒水位低)

星期

水位記錄

+2.3

+0.7

-5.0

-1.5

+3.6

+1.0

-2.5

1)本周河流水位最高的一天是______,最低的一天是______,這兩天的實(shí)際水位分別是_______;

2)完成下列本周的水位變化表(單位:),(已知上周末河流的水位比警戒水位低.注:規(guī)定水位比前一天上升用“+”,比前一天下降用“-”,不升不降用“0”)

星期

水位變化

3)與上周末相比,本周末河流水位上升了還是下降了?變化了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=3,BC=2,沿對(duì)角線AC剪開(kāi)(如圖①);固定ADC,把ABC沿AD方向平移(如圖②),當(dāng)兩個(gè)三角形重疊部分的面積最大時(shí),移動(dòng)的距離AA等于(

A. 1 B. 1.5 C. 2 D. 0.81.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,2),動(dòng)點(diǎn)B、C從原點(diǎn)O同時(shí)出發(fā),分別以每秒1個(gè)單位和每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),以點(diǎn)A為圓心,OB的長(zhǎng)為半徑畫(huà)圓;以BC為一邊,在x軸上方作等邊BCD.設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)⊙ABCD的邊BD所在直線相切時(shí),t的值為(

A. B. C. 4+6 D. 4-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料解決問(wèn)題:兩個(gè)多位數(shù)整數(shù),若它們各數(shù)位上的數(shù)字之和相等,則稱這兩個(gè)多位數(shù)互為“調(diào)和數(shù)”,例如3782,它們各數(shù)位上的數(shù)字之和分別為3+78+2,顯然3+78+2103782互為“調(diào)和數(shù)”.

1)下列說(shuō)法錯(cuò)誤的是   

A.12351互為調(diào)和數(shù)” ; B.345513互為“調(diào)和數(shù); C.20188120互為“調(diào)和數(shù)”; D.兩位數(shù)互為“調(diào)和數(shù)”

2)若A、B是兩個(gè)不等的兩位數(shù),A,B,AB互為“調(diào)和數(shù)”,且AB之和是BA之差的3倍,求證:y=-x+9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)計(jì)劃購(gòu)買A型和B型課桌凳共200套,經(jīng)招標(biāo),購(gòu)買一套A型課桌凳比購(gòu)買一套B型課桌凳少用40元,,且購(gòu)買4A型和6B型課桌凳共需1820元。

1)求購(gòu)買一套A型課桌凳和一套B型課桌凳各需多少元?

2)學(xué)校根據(jù)實(shí)際情況,要求購(gòu)買這兩種課桌凳總費(fèi)用不能超過(guò)40880元,并且購(gòu)買A型課桌凳的數(shù)量不能超過(guò)B型課桌凳的,求該校本次購(gòu)買A型和B型課桌凳共有幾種方案?哪種方案的總費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形紙片ABCD中,∠B=D=90°,點(diǎn)E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點(diǎn)B,D恰好都和點(diǎn)G重合,∠EAF=45°.

(1)求證:四邊形ABCD是正方形;

(2)求證:三角形ECF的周長(zhǎng)是四邊形ABCD周長(zhǎng)的一半;

(3)若EC=FC=1,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,且∠EAF=CEF=45°.

(1)ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到ABG(如圖①),求證:AEG≌△AEF

(2)若直線EFAB,AD的延長(zhǎng)線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2

(3)將正方形改為長(zhǎng)與寬不相等的矩形,若其余條件不變(如圖③),請(qǐng)你直接寫(xiě)出線段EF,BE,DF之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案