已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與C重合,再展開,折痕EF交AD邊于E,交BC邊于F,分別連結(jié)AF和CE.

(1)求證:四邊形AFCE是菱形;

(2)若AE=10 cm,△ABF的面積為24 cm2,求△ABF的周長;

(3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?

若存在,請(qǐng)說明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說明理由.

答案:
解析:

  解:(1)連結(jié),當(dāng)頂點(diǎn)重合時(shí),折痕垂直平分

  , 1分

  在平行四邊形中,,

  ,

  

   2分

  四邊形是菱形. 3分

  (2)四邊形是菱形,

  設(shè),,

   4分

   ①

  又,則.、凇5分

  由①、②得: 6分

  ,(不合題意舍去)

  的周長為. 7分

  (3)過,則就是所求的點(diǎn). 9分

  證明:由作法,,

  由(1)得:,又,

  ,

  ,則 10分

  四邊形是菱形,,. 11分

   12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與C重合,再展開,折精英家教網(wǎng)痕EF交AD邊于E,交BC邊于F,分別連接AF、CE和EF,設(shè)EF與AC的交點(diǎn)為O.
(1)求證:四邊形AFCE是菱形;
(2)若AE=2
13
cm
,△ABF的為面積12cm2,求△ABF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樂清市模擬)已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=5cm,△CDE的周長為12cm,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE.求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示的一張矩形紙片ABCD(AD>AB),O是對(duì)角線AC的中點(diǎn),過點(diǎn)O的直線EF⊥AC交AD邊于E,交BC邊于F.
(1)求證:四邊形AFCE是菱形;
(2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案