【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(11),B(4,2),C(3,4)

(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長度后得到的圖形△A1B1C1;

(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;

(3)x軸上找一點(diǎn)P,使PAPB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

【答案】1)見解析;(2)見解析;(3P2,0.

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、BC平移后的對(duì)應(yīng)點(diǎn)的位置,然后順次連接即可;

2))找出點(diǎn)A、B、C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)的位置,然后順次連接即可;

3)找出A的對(duì)稱點(diǎn)A′,連接BA′,與x軸交點(diǎn)即為P

解:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、BC平移后的對(duì)應(yīng)點(diǎn)的位置,然后順次連接,如圖所示:

2)找出點(diǎn)A、BC關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)的位置,然后順次連接,如圖所示:

3)找出A的對(duì)稱點(diǎn)A′,連接BA′,與x軸交點(diǎn)即為P,

由題知,A1,1),B4,2),

A′(1,-1),

設(shè)AB的解析式為y=kx+b,把B42),A′(1,-1)代入y=kx+b中,

,

解得:,

y=x-2,

當(dāng)y=0時(shí),x=2,

P點(diǎn)坐標(biāo)為(2,0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里裝有6個(gè)白色乒乓球和若干個(gè)紅色的乒乓球,這些球除顏色外其余均相同,攪拌均勻后,從這個(gè)袋子里隨機(jī)摸出一個(gè)乒乓球,是紅球的概率是

1)求該袋子中紅球的個(gè)數(shù);

2)小亮取出3個(gè)白色乒乓球分別表上1,23個(gè)數(shù)字,裝入另一個(gè)不透明的袋子里攪拌均勻,第一次從袋子里摸出一個(gè)球并記錄下該球上的數(shù)字,重新放回袋子中攪拌均勻,第二次從袋子中摸出一個(gè)球并記錄下該球上的數(shù)字,求這兩個(gè)數(shù)字之積是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為點(diǎn),與軸分別交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)

1)直接寫出點(diǎn)的坐標(biāo)為________;

2)如圖,若、兩點(diǎn)在原點(diǎn)的兩側(cè),且,四邊形為正方形,其中頂點(diǎn)、軸上,、位于拋物線上,求點(diǎn)的坐標(biāo);

3)若線段,點(diǎn)為反比例函數(shù)與拋物線在第一象限內(nèi)的交點(diǎn),設(shè)的橫坐標(biāo)為,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與雙曲線只有一個(gè)交點(diǎn)A1,2),且與x軸、y軸分別交于B、C兩點(diǎn),AD垂直平分OB,垂足為D,

求:(1)直線、雙曲線的解析式.

2)線段BC的長;

3)三角形BOC的內(nèi)心到三邊的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,OAC的中點(diǎn),過點(diǎn)O的直線分別與AB,CD交于點(diǎn)EF,連接BFAC于點(diǎn)M,連接DE,BO.若∠COB60°,FOFC,則下列結(jié)論:①FBOC,OMCM②△EOB≌△CMB;③四邊形EBFD是菱形;④MBOE32.其中正確結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCAED都是等腰直角三角形,∠BAC=EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,如圖2,ABC以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn).

1)證明:BE=CD

2)當(dāng)AC=ED時(shí),探究在ABC旋轉(zhuǎn)的過程中,是否存在這樣的旋轉(zhuǎn)角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出角α的度數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+c的對(duì)稱軸為x=﹣1,且過點(diǎn)(﹣3,0),(0,﹣3).

1)求拋物線的表達(dá)式.

2)已知點(diǎn)(mk)和點(diǎn)(n,k)在此拋物線上,其中mn,請(qǐng)判斷關(guān)于t的方程t2+mt+n0是否有實(shí)數(shù)根,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=kx+bk,b為常數(shù),k0)與函數(shù)y=的圖象交于點(diǎn)A-1,m

1)求m;

2)當(dāng)k=______時(shí),則直線l經(jīng)過第一、三、四象限(任寫一個(gè)符合題意的值即可);

3)求(2)中的直線l的解析式和它與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉辦中學(xué)生足球賽,初中男子組共有市直學(xué)校的AB兩隊(duì)和縣區(qū)學(xué)校的e、fg、h四隊(duì)報(bào)名參賽,六支球隊(duì)分成甲、乙兩組,甲組由A、ef三隊(duì)組成,乙組由B、gh三隊(duì)組成,現(xiàn)要從甲、乙兩組中各隨機(jī)抽取一支球隊(duì)進(jìn)行首場(chǎng)比賽.

1)在甲組中,首場(chǎng)比賽抽到e隊(duì)的概率是 ;

2)請(qǐng)你用畫樹狀圖或列表的方法,求首場(chǎng)比賽出場(chǎng)的兩個(gè)隊(duì)都是縣區(qū)學(xué)校隊(duì)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案