【題目】如圖,的一條中線,邊上一點且相交于四邊形的面積為,則的面積是(

A.B.C.D.

【答案】B

【解析】

連結(jié)BF,設(shè)SBDFx,則SBEF6x,由CD是中線可以得到SADFSBDF,SBDCSADC,由BE2CE可以得到SCEFSBEF,SABESABC,進(jìn)而可用兩種方法表示△ABC的面積,由此可得方程,進(jìn)而得解.

解:如圖,連接BF,

設(shè)SBDFx,則SBEF6x

CD是中線,

SADFSBDFx,SBDC SADCABC,

BE2CE,

SCEFSBEF(6x),SABESABC

SBDC SADCABC,

SABC2SBDC

2[x(6x)]

18x,

SABESABC,

SABCSABE

[2x (6x)]

1.5x9,

18x 1.5x9,

解得:x3.6,

SABC18x,

183.6

14.4,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點,C,D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點E(點E在線段AB上),測得∠DEB=60°,求C,D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補,且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,是一個8×10正方形格紙,ABCA點坐標(biāo)為(-2,1.

1)補全坐標(biāo)系并指出ABCABC'滿足什么幾何變換(直接寫答案)?

2)作ABC'關(guān)于x軸對稱圖形A''B''C'';

3ABCA''B''C''滿足什么幾何變換?求A''、B''、C''三點坐標(biāo)(直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點,A點在B點左邊,與y軸交于C點,頂點為M.
(1)當(dāng)m=1時,求點A、B、M坐標(biāo);
(2)如圖(1)的條件下,若P為拋物線上一個動點,以AP為斜邊的等腰直角的直角頂點Q在對稱軸上,(A、P、Q按順時針方向排列),求P點坐標(biāo).

(3)如圖2,若一次函數(shù)y=kx+b過B點且與拋物線只有一個公共點,平移直線y=kx+b,使其過拋物線的頂點M,與拋物線另一個交點為D,與x軸交于F點,當(dāng)m變化時,求證:DF:MF是定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的面積為6,AC3,現(xiàn)將ABC沿AB所在直線翻折,使點C落在直線AD上的處,P為直線AD上的任意一點,則線段BP的最短長度為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PE與CD相交于點O,且OE=OD.

(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O過點B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( )

A.6
B.13
C.
D.2

查看答案和解析>>

同步練習(xí)冊答案