【題目】已知:如圖,C是AB上一點,點D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點F,猜想△BEF的形狀,并給予證明.
【答案】(1)見解析;(2)△BEF為等腰三角形,證明見解析.
【解析】
(1)先由AD∥BE得出∠A=∠B,再利用SAS證明△ADC≌△BCE即得結(jié)論;
(2)由(1)可得CD=CE,∠ACD=∠BEC,再利用等腰三角形的性質(zhì)和三角形的外角性質(zhì)可得∠BFE=∠BEF,進一步即得結(jié)論.
(1)證明:∵AD∥BE,∴∠A=∠B,
在△ADC和△BCE中
∴△ADC≌△BCE(SAS),
∴CD=CE;
(2)解:△BEF為等腰三角形,證明如下:
由(1)知△ADC≌△BCE,
∴CD=CE,∠ACD=∠BEC,
∴∠CDE=∠CED,
∴∠CDE+∠ACD=∠CED+∠BEC,
即∠BFE=∠BEF,
∴BE=BF,
∴△BEF是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應(yīng)分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=(2m+1)x+m﹣3
(1)若函數(shù)圖象經(jīng)過原點,求m的值;
(2)若函數(shù)圖象與y軸的交點坐標為(0,﹣2),求m的值;
(3)若y隨著x的增大而增大,求m的取值范圖;
(4)若函數(shù)圖象經(jīng)過第一、三,四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M為等腰△ABD的底AB的中點,過D作DC∥AB,連結(jié)BC;AB=8cm,DM=4cm,DC=1cm,動點P自A點出發(fā),在AB上勻速運動,動點Q自點B出發(fā),在折線BC﹣CD上勻速運動,速度均為1cm/s,當其中一個動點到達終點時,它們同時停止運動,設(shè)點P運動t(s)時,△MPQ的面積為S(不能構(gòu)成△MPQ的動點除外).
(1)t(s)為何值時,點Q在BC上運動,t(s)為何值時,點Q在CD上運動;
(2)求S與t之間的函數(shù)關(guān)系式;
(3)當t為何值時,S有最大值,最大值是多少?
(4)當點Q在CD上運動時,直接寫出t為何值時,△MPQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉辦“網(wǎng)絡(luò)安全知識答題競賽”,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
七年級 | a | 85 | b | S七年級2 |
八年級 | 85 | c | 100 | 160 |
(1)根據(jù)圖示填空:a= ,b= ,c= ;
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個代表隊的決賽成績較好?
(3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC各頂點的坐標分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在圖中畫出△ABC關(guān)于原點對稱的△A1B1C1;
(2)在圖中畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求點A運動路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,是兩種長方形鋁合金窗框,已知窗框的長都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個,(2)型的窗框2個.
(1)用含x、y的式子表示共需鋁合金的長度;
(2)若1m鋁合金的平均費用為100元,求當x=1.2,y=1.5時,鋁合金的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在筆直的道路上相向而行,甲騎自行車從地到地,乙駕車從地到地,假設(shè)他們分別以不同的速度勻速行駛,甲先出6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個過程中,甲、乙兩人之間的距離(千米)與甲出發(fā)的時間(分)之間的部分函數(shù)圖象如圖.
(1)兩地相距______千米,甲的速度為______千米/分;
(2)直接寫出點的坐標______,求線段所表示的與之間的函數(shù)表達式;
(3)當乙到達終點時,甲還需______分鐘到達終點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com