【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(4,0),點(diǎn)B(0,3),點(diǎn)P從點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)Q從點(diǎn)A出發(fā)沿AO方向向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2).
(1)求直線AB的解析式;
(2)設(shè)△AQP的面積為y,求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使線段PQ恰好把△AOB的周長(zhǎng)和面積同時(shí)平分?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)連接PO,并把△PQO沿QO翻折,得到四邊形PQP′O,那么是否存在某一時(shí)刻t,使四邊形PQP′O為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)Q的坐標(biāo)和菱形的邊長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x+3;(2)y=﹣t2+3t;(3)不存在某一時(shí)刻t,使線段PQ恰好把△AOB的周長(zhǎng)和面積同時(shí)平分,理由見(jiàn)解析;(4)存在某一時(shí)刻t,使四邊形PQP'O為菱形,點(diǎn)Q的坐標(biāo)是(),菱形PQP′O的邊長(zhǎng)為.
【解析】
(1)已知了A、B兩點(diǎn)的坐標(biāo),可用待定系數(shù)法求出直線AB的解析式.
(2)三角形APQ中,底邊AQ的長(zhǎng)易知,關(guān)鍵是求P點(diǎn)縱坐標(biāo)的值;過(guò)P作PM⊥OA于M,通過(guò)構(gòu)建的相似三角形得出的成比例線段,可求出PM的長(zhǎng).進(jìn)而可根據(jù)三角形的面積公式求出y,t的函數(shù)關(guān)系式.
(3)可用分析法求解.先假設(shè)存在這樣的t值,由于此時(shí)PQ將三角形ABO的周長(zhǎng)平分,因此BP+BO+OQ=AP+AQ,據(jù)此可求出t的值,然后將t的值,代入(2)的函數(shù)關(guān)系式中,看此時(shí)三角形APQ的面積是否等于三角形AOB的面積的一半即可.
(4)如果四邊形OPQP′是菱形,那么需要滿足的條件是OP=PQ,那么PM垂直平分OQ,此時(shí)QM=OQ,可借助OA的長(zhǎng)來(lái)求t的值.過(guò)P作PN⊥OB于N,那么三角形BNP和三角形BOA相似,可求得PN的表達(dá)式,也就求出了QM,MO的表達(dá)式,可根據(jù)OA=OM+QM+AQ來(lái)求出此時(shí)t的值.進(jìn)而可求出菱形的邊長(zhǎng).
(1)設(shè)直線AB的解析式為y=kx+b,
∴
解得,
∴直線AB的解析式是.
(2)在Rt△AOB中,AB==5,
依題意,得BP=t,AP=5﹣t,AQ=2t,
過(guò)點(diǎn)P作PM⊥AO于M,
∵△APM∽△ABO,
∴,
∴,
∴PM=3﹣t,
∴y=AQPM=2t(3﹣t)=﹣t2+3t.
(3)不存在某一時(shí)刻
若PQ把△AOB周長(zhǎng)平分,則AP+AQ=BP+BO+OQ,
∴(5﹣t)+2t=t+3+(4﹣2t),
解得t=1.
若PQ把△AOB面積平分,則S△APQ=S△AOB,
∴﹣t2+3t=3,
∵t=1代入上面方程不成立,
∴不存在某一時(shí)刻t,使線段PQ把△AOB的周長(zhǎng)和面積同時(shí)平分.
(4)存在某一時(shí)刻t,使四邊形PQP'O為菱形,
過(guò)點(diǎn)P作PN⊥BO于N,
若四邊形PQP′O是菱形,則有PQ=PO,
∵PM⊥AO于M,
∴QM=OM,
∵PN⊥BO于N,可得△PBN∽△ABO,
∴,
∴,
∴PN=t,
∴QM=OM=t,
∴t+t+2t=4,
∴t=,
∴當(dāng)t=時(shí),四邊形PQP′O是菱形,
∴OQ=4﹣2t=,
∴點(diǎn)Q的坐標(biāo)是(,0).
∵PM=3﹣t=,OM=t=,
在Rt△PMO中,PO===,
∴菱形PQP′O的邊長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?
(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫出樹(shù)狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):“頂點(diǎn)在圓上,兩邊與圓相交”,“同弧所對(duì)的圓周角相等”,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)補(bǔ)充完整:
定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對(duì)的一個(gè)圓外角.
(1)請(qǐng)?jiān)趫D2中畫出所對(duì)的一個(gè)圓內(nèi)角;
提出猜想
(2)通過(guò)多次畫圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;
問(wèn)題解決
經(jīng)過(guò)證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問(wèn)題.
(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有兩組相同的撲克牌,每組兩張,兩張牌的牌面數(shù)字分別是2和3,從每組牌中各隨機(jī)摸出一張牌,稱為一次試驗(yàn).
(1)小紅與小明用一次試驗(yàn)做游戲,如果摸到的牌面數(shù)字相同小紅獲勝,否則小明獲勝,請(qǐng)用列表法或畫樹(shù)狀圖的方法說(shuō)明這個(gè)游戲是否公平?
(2)小麗認(rèn)為:“在一次試驗(yàn)中,兩張牌的牌面數(shù)字和可能為4、5、6三種情況,所以出現(xiàn)‘和為4’的概率是”,她的這種看法是否正確?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春秋旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):
某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費(fèi)用27000元,請(qǐng)問(wèn)該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為的中,弦,所對(duì)的圓心角分別是,,若,,則弦的長(zhǎng)等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比特殊四邊形的學(xué)習(xí),我們可以定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
探索體驗(yàn)
(1)如圖①,已知四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)如圖②,若AB=AD=a,CB=CD=b,且a≠b,那么四邊形ABCD是“等對(duì)角四邊形”嗎?試說(shuō)明理由.
嘗試應(yīng)用
(3)如圖③,在邊長(zhǎng)為6的正方形木板ABEF上裁出“等對(duì)角四邊形”ABCD,若已經(jīng)確定DA=4,∠DAB=60°,是否在正方形ABEF內(nèi)(包括邊上)存在一點(diǎn)點(diǎn)C,使四邊形ABCD以∠DAB=∠BCD為等對(duì)角的四邊形的面積最大?若存在,試求出四邊形ABCD的最大面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com