如圖,點(diǎn)P是菱形ABCD對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng)交AD于點(diǎn)E,交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:∠DCP=∠DAP;

(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對(duì)角線BD的長(zhǎng).

 

【答案】

(1)證明DCP≌△DAP得∠DCP=∠DAP(2)

【解析】

試題分析:(1)證明:∵四邊形ABCD是菱形,

∴∠ADB=∠CDB,AD=DC

∵DP=DP

∴△DCP≌△DAP

∴∠DCP=∠DAP                

(2)∵ 四邊形ABCD是菱形

∴AB=AD=DC=2,AB∥CD        

 ,∠CDB=∠DBA

∴AD=AB=AF=2               

∴∠ADF=90°,∠DBP=∠ADB

∴∠DFB+∠DBF=90°

∵PA⊥BF,∴∠DAF+∠DAP=90°

∴∠DAF=∠DFA              

∴AD=DF=2

∴BD=  

考點(diǎn):三角形全等、勾股定理

點(diǎn)評(píng):本題考查三角形全等、勾股定理,掌握勾股定理的內(nèi)容,會(huì)判定兩個(gè)三角形全等

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是菱形ABDC對(duì)角線BC上一動(dòng)點(diǎn),EF∥AB,GF∥AC,菱形兩條對(duì)角線BC和AD的長(zhǎng)分別為2cm、5cm,當(dāng)點(diǎn)F在BC上移動(dòng)時(shí),陰影面積會(huì)改變嗎?如果不變,請(qǐng)求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延精英家教網(wǎng)長(zhǎng)線于F.
(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP:PB=1:2,且PA⊥BF,求對(duì)角線BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘇州)如圖,點(diǎn)P是菱形ABCD對(duì)角線AC上的一點(diǎn),連接DP并延長(zhǎng)DP交邊AB于點(diǎn)E,連接BP并延長(zhǎng)交邊AD于點(diǎn)F,交CD的延長(zhǎng)線于點(diǎn)G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線段DP的長(zhǎng)為x,線段PF的長(zhǎng)為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x=6時(shí),求線段FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆湖北省襄陽(yáng)市襄州區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,點(diǎn)P是菱形ABCD對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng)交AD于點(diǎn)E,交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對(duì)角線BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案