【題目】如圖,已知拋物線,將拋物線沿軸翻折,得到拋物線.
(1)求出拋物線的函數(shù)表達式;
(2)現(xiàn)將拋物線向左平移個單位長度,平移后得到的新拋物線的頂點為,與軸的交點從左到右依次為,;將拋物線向右也平移個單位長度,平移后得到的新拋物線的頂點為,與軸交點從左到右依次為,.在平移過程中,是否存在以點,,,為頂點的四邊形是矩形的情形?若存在,請求出此時的值;若不存在,請說明理由.
【答案】(1);(2)存在.當時,以點,,,為頂點的四邊形是矩形.
【解析】
(1)拋物線翻折前后頂點關(guān)于x軸對稱,a互為相反數(shù);
(2)連接AN,NE,EM,MA,M,N關(guān)于原點O對稱OM=ON,A,E關(guān)于原點O對稱OA=OE,判斷四邊形ANEM為平行四邊形;若AM2+ME2=AE2,解得m=3,即可求解.
解:(1)∵拋物線的頂點為,
∴沿軸翻折后頂點的坐標為.
∴拋物線的函數(shù)表達式為.
(2)存在.
理由:連接,,,.依題意可得:,.
∴,關(guān)于原點對稱,∴.
原、拋物線與軸的兩個交點分別為,.
∴,,∴,關(guān)于原點對稱,∴.
∴四邊形為平行四邊形.
,
,
,
若,則,解得.
此時是直角三角形,且.
∴當時,以點,,,為頂點的四邊形是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,.于.為邊上的一個(不與、重合)點,且于相交于點.
(1)填空:______;______.
(2)當時,證明:.
(3)面積的最小值是_______.
(4)當的內(nèi)心在的外部時,直接寫出的范圍______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將拋物線平移后,新拋物線經(jīng)過原拋物線的頂點,新拋物線與軸正半軸交于點,聯(lián)結(jié),,設新拋物線與軸的另一交點是,新拋物線的頂點是.
(1)求點的坐標;
(2)設點在新拋物線上,聯(lián)結(jié),如果平分,求點的坐標;
(3)在(2)的條件下,將拋物線沿軸左右平移,點的對應點為,當和相似時,請直接寫出平移后得到拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從江岸區(qū)某初中九年級1200名學生中隨機選取一部分學生進行調(diào)查,調(diào)查情況:A、上網(wǎng)時間≤1小時;B、1小時<上網(wǎng)時間≤4小時;C、4小時<上網(wǎng)時間≤7小時;D、上網(wǎng)時間>7小時.統(tǒng)計結(jié)果制成了如圖統(tǒng)計圖:以下結(jié)論中正確的個數(shù)是( )
①參加調(diào)查的學生有200人;
②估計校上網(wǎng)不超過7小時的學生人數(shù)是900;
③C的人數(shù)是60人;
④D所對的圓心角是72°.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),再將△A1B1C1繞原點O順時針旋轉(zhuǎn)90°得到△A2B2C2,點A1的對應點為點A2.
(1)畫出△A1B1C1和△A2B2C2;
(2)求出在這兩次變換過程中,點A經(jīng)過點A1到達A2的路徑總長;
(3)求線段B1C1旋轉(zhuǎn)到B2C2所掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵城市周邊的農(nóng)民的種菜的積極性,某公司計劃新建,兩種溫室80棟,將其售給農(nóng)民種菜.已知建1個型溫室和2個型溫室一共需要8.1萬元,兩種溫室的成本和出售價如下表:
型 | 型 | |
成本(萬元/棟) | 2.5 | |
出售價(萬元/棟) | 3.1 | 3.5 |
(1)求的值;
(2)已知新建型溫室不少于38棟不多于50棟且所建的兩種溫室可全部售出.為了減輕菜農(nóng)負擔,試問采用什么方案建設溫室可使利潤最少,最少利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當t= 分鐘時甲乙兩人相遇,甲的速度為 米/分鐘,乙的速度為 米/分鐘;
(2)圖中點A的坐標為 ;
(3)求線段AB所直線的函數(shù)表達式;
(4)在整個過程中,何時兩人相距400米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點D在AC上(可與點A、C重合),分別過點A、C作直線BD的垂線,垂足為E、F,設BD=x,AE=m,CF=n,(當點D與A重合時,我們認為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對給定的一個x值,有時只能確定唯一的點D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請你確定一條直線,使得A、B、C三點到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1、圖2,在圓O中,,,將弦AB與弧AB所圍成的弓形包括邊界的陰影部分繞點B順時針旋轉(zhuǎn)度,點A的對應點是.
點O到線段AB的距離是______;______;點O落在陰影部分包括邊界時,的取值范圍是______;
如圖3,線段B與優(yōu)弧ACB的交點是D,當時,說明點D在AO的延長線上;
當直線與圓O相切時,求的值并求此時點運動路徑的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com