【題目】某校為了解九年級(jí)學(xué)生的物理實(shí)驗(yàn)操作情況,進(jìn)行了抽樣調(diào)查.隨機(jī)抽取了40名同學(xué)進(jìn)行實(shí)驗(yàn)操作,成績(jī)?nèi)缦拢?/span>
21 | 22 | 22 | 23 | 23 | 23 | 23 | 22 | 24 | 24 |
25 | 23 | 21 | 25 | 24 | 25 | 23 | 22 | 24 | 25 |
23 | 23 | 24 | 24 | 24 | 24 | 23 | 25 | 25 | 21 |
21 | 23 | 23 | 24 | 25 | 24 | 22 | 24 | 22 | 24 |
整理上面數(shù)據(jù),得到如下統(tǒng)計(jì)圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如表所示:
統(tǒng)計(jì)量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | m | 24 | 23 |
根據(jù)以上信息,解答下列問題:
(1)如表中平均數(shù)的值為_______;
(2)扇形統(tǒng)計(jì)圖中“ 24分”部分的圓心角大小為_______度;
(3)根據(jù)樣本數(shù)據(jù),請(qǐng)估計(jì)該校九年級(jí)320名學(xué)生中物理實(shí)驗(yàn)操作得滿分的學(xué)生人數(shù).
【答案】(1)23.3;(2)108;(3)估計(jì)該校九年級(jí)320名學(xué)生中物理實(shí)驗(yàn)操作得滿分的學(xué)生人數(shù)約為56人.
【解析】
(1)根據(jù)平均數(shù)的計(jì)算方法即可求得;
(2)根據(jù)扇形統(tǒng)計(jì)圖中“24分”所占30%,即可求出圓心角的大;
(3)根據(jù)40個(gè)學(xué)生中,物理實(shí)驗(yàn)操作得滿分(25分)的學(xué)生是7人,即可求得九年級(jí)320名學(xué)生中物理實(shí)驗(yàn)操作得滿分(25分)的學(xué)生人數(shù).
解:(1)m=(21×4+22×6+23×11+24×12+25×7)=23.3,
故答案為23.3;
(2)扇形統(tǒng)計(jì)圖中“24分”部分的圓心角大小為360°×30%=108°,
故答案為108;
(3)九年級(jí)320名學(xué)生中物理實(shí)驗(yàn)操作得滿分(25分)的學(xué)生人數(shù)320×=56(人).
答:估計(jì)該校九年級(jí)320名學(xué)生中物理實(shí)驗(yàn)操作得滿分的學(xué)生人數(shù)約為56人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)對(duì)即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請(qǐng)根據(jù)圖表信息回答下列問題:
(1)本次調(diào)查的樣本為 ,樣本容量為 ;
(2)在頻數(shù)分布表中,a= ,b= ,并將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線與軸交于點(diǎn).
(1)試確定該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)是該拋物線的頂點(diǎn),求的面積;
(3)若點(diǎn)是線段上的一動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,把點(diǎn)沿對(duì)折,使點(diǎn)落在上的點(diǎn),已知,.
(1)求點(diǎn)的坐標(biāo);
(2)如果一條不與拋物線對(duì)稱軸平行的直線與該拋物線僅有一個(gè)交點(diǎn),我們把這條直線稱為拋物線的切線,已知拋物線經(jīng)過點(diǎn),,且直線是該拋物線的切線,求拋物線的解析式;
(3)已知直線與(2)中的拋物線交于,兩點(diǎn),點(diǎn)的坐標(biāo)為.求證:為定值.(參考公式:在平面直角坐標(biāo)系中,已知點(diǎn),,則,兩點(diǎn)之間的距離為)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C、D在圓O上,且AD平分∠CAB.過點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于E,與AB的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:EF與圓O相切;
(2)若AB=6,AD=4,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500m,先到終點(diǎn)
的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時(shí)間t(s)之間的關(guān)系
如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊矩形鐵皮,長(zhǎng)12dm,寬4dm,在它的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,制作一個(gè)無蓋方盒,如果要使制作的無蓋方盒的側(cè)面積.占矩形鐵皮面積的八分之五,設(shè)各角切去的正方形的邊長(zhǎng)為xdm.
(1)用含x的代數(shù)式表示,盒底的長(zhǎng)為______dm,盒底的寬為______dm;
(2)求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更好地推進(jìn)太原市生活垃圾分類工作,改善城市生態(tài)環(huán)境,2019年12月17日,太原市政府召開了太原市生活垃圾分類推進(jìn)會(huì),意味著太原垃圾分類戰(zhàn)役的全面打響.某小區(qū)準(zhǔn)備購(gòu)買兩種型號(hào)的垃圾箱,通過市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)型垃圾箱和2個(gè)型垃圾箱共需540元,購(gòu)買2個(gè)型垃圾箱比購(gòu)買3個(gè)型垃圾箱少用160元.
(1)求每個(gè)型垃圾箱和型垃圾箱各多少元?
(2)該小區(qū)物業(yè)計(jì)劃用不多于2100元的資金購(gòu)買兩種型號(hào)的垃圾箱共20個(gè),則該小區(qū)最多可以購(gòu)買型垃圾箱多少個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com