觀察一列數(shù):
3
2
5
4
,
7
6
,
9
8
,…,第n個(gè)數(shù)是
 
.(用含字母n的式子表示)
分析:根據(jù)所給的數(shù)據(jù)找出其中的規(guī)律即可解答.
解答:解:∵
3
2
=
2×1+1
2×1
;
5
4
=
2×2+1
2×2

7
6
=
2×3+1
2×3

9
8
=
2×4+1
2×4
;
∴第n個(gè)數(shù)是
2n+1
2n
點(diǎn)評(píng):本題屬規(guī)律性題目,解答此題的關(guān)鍵是根據(jù)題意找出所給數(shù)據(jù)之間的規(guī)律,再依次推出第n個(gè)數(shù)的值即可
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是
2
2
;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=
218
218
,an=
2n
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)觀察一列數(shù):-2,-4,-8,-16,-32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是
2
2
;根據(jù)這個(gè)規(guī)律,如果a1表示第1項(xiàng),a2表示第2項(xiàng),an(n為正整數(shù))表示這個(gè)數(shù)列的第n項(xiàng),那么a18=
-218
-218
;an=
-2n
-2n

(2)如果想求l+3+32+33+…+320的值,可令S=l+3+32+33+…+3201…①
將①式兩邊同乘以3,得
3S=3+32+33+34+…+3202
3S=3+32+33+34+…+3202
…②
由②減去①式,可以求得S=
1
2
(3202-1)
1
2
(3202-1)

(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=
-a1qn-1
-a1qn-1
(用含a1,q,n的數(shù)學(xué)式子表示),如果這個(gè)常數(shù)為2008,求al+a2+…+an的值.(用含al,n的數(shù)學(xué)式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察一列數(shù):-2,-4,-8,-16,-32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是
2
2
;若用a1表示第一項(xiàng),a2表示第二項(xiàng),則an=
-2n
-2n
.(n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀察一列數(shù):
3
2
5
4
,
7
6
,
9
8
,…,第n個(gè)數(shù)是______.(用含字母n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案