【題目】如圖,已知AB是⊙O的直徑,直線l與⊙O相切于點(diǎn)C且,弦CD交AB于E,BF⊥l,垂足為F,BF交⊙O于G.

(1)求證:CE2=FGFB;

(2)若tan∠CBF=,AE=3,求⊙O的直徑.

【答案】(1)見(jiàn)解析;(2)15.

【解析】

(1)由切割線定理知:CF2=FGFB,欲證本題的結(jié)論,需先證得CE=CF;可通過(guò)證BCE≌△BCF得出;

(2)欲求⊙O的直徑,已知AE的長(zhǎng),關(guān)鍵是求出BE的長(zhǎng)度;在RtABC中,CEAB,根據(jù)射影定理得到CE2=AEEB,由此可求出BE的長(zhǎng).

(1)連接AC,

AB為直徑,

∴∠ACB=90°,

,且AB是直徑,

ABCD,

CERtABC的高,

∴∠A=ECB,ACE=EBC,

CF是⊙O的切線,

∴∠FCB=A,CF2=FGFB,

∴∠FCB=ECB,

∵∠BFC=CEB=90°,CB=CB,

∴△BCF≌△BCE,

CE=CF,FBC=CBE,

CE2=FGFB;

(2)∵∠CBF=CBE,CBE=ACE,

∴∠ACE=CBF;

tanCBF=tanACE=,

AE=3,

,

CE=6,

RtABC中,CE是高,

CE2=AEEB,即62=3EB,

EB=12,

∴⊙O的直徑為:12+3=15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,經(jīng)過(guò)原點(diǎn)的拋物線可以用y=ax2+bx(a≠0)表示,對(duì)于這樣的拋物線:

(1)當(dāng)拋物線經(jīng)過(guò)點(diǎn)(﹣2,0)和(﹣1,3)時(shí),求拋物線的表達(dá)式;

(2)當(dāng)拋物線的頂點(diǎn)在直線y=﹣2x上時(shí),求b的值;

(3)如圖,現(xiàn)有一組這樣的拋物線,它們的頂點(diǎn)A1、A2、…,An在直線y=﹣2x上,橫坐標(biāo)依次為﹣1,﹣2,﹣3,…,﹣n(n為正整數(shù),且n≤12),分別過(guò)每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1、B2,…,Bn,以線段AnBn為邊向左作正方形AnBnCnDn,如果這組拋物線中的某一條經(jīng)過(guò)點(diǎn)Dn,求此時(shí)滿足條件的正方形AnBnCnDn的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高學(xué)生的閱讀興趣,某學(xué)校建立了共享書(shū)架,并購(gòu)買(mǎi)了一批書(shū)籍.其中購(gòu)買(mǎi)種圖書(shū)花費(fèi)了3000元,購(gòu)買(mǎi)種圖書(shū)花費(fèi)了1600元,A種圖書(shū)的單價(jià)是種圖書(shū)的1.5倍,購(gòu)買(mǎi)種圖書(shū)的數(shù)量比種圖書(shū)多20本.

1)求兩種圖書(shū)的單價(jià);

2)書(shū)店在世界讀書(shū)日進(jìn)行打折促銷(xiāo)活動(dòng),所有圖書(shū)都按8折銷(xiāo)售學(xué)校當(dāng)天購(gòu)買(mǎi)了種圖書(shū)20本和種圖書(shū)25本,共花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖:在平面直角坐標(biāo)系中,點(diǎn)D是直線y=﹣x上一點(diǎn),過(guò)O、D兩點(diǎn)的圓⊙O1分別交x軸、y軸于點(diǎn)A和B.

(1)當(dāng)A(﹣12,0),B(0,﹣5)時(shí),求O1的坐標(biāo);

(2)在(1)的條件下,過(guò)點(diǎn)A作⊙O1的切線與BD的延長(zhǎng)線相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);

(3)若點(diǎn)D的橫坐標(biāo)為,點(diǎn)I為△ABO的內(nèi)心,IE⊥AB于E,當(dāng)過(guò)O、D兩點(diǎn)的⊙O1的大小發(fā)生變化時(shí),其結(jié)論:AE﹣BE的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,請(qǐng)求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)邊上的動(dòng)點(diǎn),連接,以為斜邊在的下方作等腰直角三角形

1)填空:的面積等于 ;

2)連接,求證:的平分線;

3)點(diǎn)邊上,且, 當(dāng)從點(diǎn)出發(fā)運(yùn)動(dòng)至點(diǎn)停止時(shí),求點(diǎn)相應(yīng)的運(yùn)動(dòng)路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問(wèn)總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,PD切O于點(diǎn)C,與BA的延長(zhǎng)線交于點(diǎn)D,DEPO交PO延長(zhǎng)線于點(diǎn)E,連接PB,EDB=EPB

(1)求證:PB是的切線

(2)若PB=6,DB=8,求O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門(mén)對(duì)我國(guó)領(lǐng)海實(shí)行常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)30海里的速度向正東方航行,在處測(cè)得燈塔在北偏東60°方向上, 繼續(xù)航行后到達(dá)處, 此時(shí)測(cè)得燈塔在北偏東30°方向上.

1 的度數(shù);

2)已知在燈塔的周?chē)?/span>15海里內(nèi)有暗礁,問(wèn)海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見(jiàn)表:

每臺(tái)甲型收割機(jī)的租金

每臺(tái)乙型收割機(jī)的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求yx間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79 600元,說(shuō)明有多少種分配方案,并將各種方案設(shè)計(jì)出來(lái);

(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案