【題目】已知二次函數(shù)的與的部分對(duì)應(yīng)值如表:
下列結(jié)論:拋物線的開(kāi)口向上;②拋物線的對(duì)稱軸為直線;③當(dāng)時(shí),;④拋物線與軸的兩個(gè)交點(diǎn)間的距離是;⑤若是拋物線上兩點(diǎn),則,其中正確的個(gè)數(shù)是( )
A.B.C.D.
【答案】B
【解析】
先利用交點(diǎn)式求出拋物線解析式,則可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱性可對(duì)②進(jìn)行判斷;利用拋物線與x軸的交點(diǎn)坐標(biāo)為(0,0),(4,0)可對(duì)③④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)求出x的值,即可對(duì)⑤進(jìn)行判斷.
設(shè)拋物線解析式為y=ax(x﹣4),
把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,
∴拋物線解析式為y=x2﹣4x,所以①正確;
拋物線的對(duì)稱軸為直線x==2,所以②正確;
∵拋物線與x軸的交點(diǎn)坐標(biāo)為(0,0),(4,0),開(kāi)口向上,
∴當(dāng)0<x<4時(shí),y<0,所以③錯(cuò)誤;
拋物線與x軸的兩個(gè)交點(diǎn)間的距離是4,所以④正確;
若A(x1,2),B(x2,3)是拋物線上兩點(diǎn),由x2﹣4x=2,解得:x1=,由x2﹣4x=3,解得:x2=,若取x1=,x2=,則⑤錯(cuò)誤.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春臨大地,學(xué)校決定給長(zhǎng)12米,寬9米的一塊長(zhǎng)方形展示區(qū)進(jìn)行種植改造現(xiàn)將其劃分成如圖兩個(gè)區(qū)域:區(qū)域Ⅰ矩形ABCD部分和區(qū)域Ⅱ四周環(huán)形部分,其中區(qū)域Ⅰ用甲、乙、丙三種花卉種植,且EF平分BD,G,H分別為AB,CD中點(diǎn).
(1)若區(qū)域Ⅰ的面積為Sm2,種植均價(jià)為180元/m2,區(qū)域Ⅱ的草坪均價(jià)為40元/m2,且兩區(qū)域的總價(jià)為16500元,求S的值.
(2)若AB:BC=4:5,區(qū)域Ⅱ左右兩側(cè)草坪環(huán)寬相等,均為上、下草坪環(huán)寬的2倍
①求AB,BC的長(zhǎng);
②若甲、丙單價(jià)和為360元/m2,乙、丙單價(jià)比為13:12,三種花卉單價(jià)均為20的整數(shù)倍.當(dāng)矩形ABCD中花卉的種植總價(jià)為14520元時(shí),求種植乙花卉的總價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸的一個(gè)交點(diǎn)為點(diǎn),與軸的交點(diǎn)為點(diǎn),拋物線的對(duì)稱軸與軸交于點(diǎn),與線段交于點(diǎn),點(diǎn)是對(duì)稱軸上一動(dòng)點(diǎn).
(1)點(diǎn)的坐標(biāo)是________,點(diǎn)的坐標(biāo)是________;
(2)是否存在點(diǎn),使得和相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,拋物線的對(duì)稱軸向右平移與線段交于點(diǎn),與拋物線交于點(diǎn),當(dāng)四邊形是平行四邊形且周長(zhǎng)最大時(shí),求出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過(guò)上任意一點(diǎn),作軸垂線交于點(diǎn),交軸于點(diǎn),作軸垂線,交于點(diǎn),交軸于點(diǎn),直線分別交軸,軸于點(diǎn),則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在Rt△ABC和Rt△DEF中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB=EF=6,如圖1,D是斜邊AB的中點(diǎn),將等腰Rt△DEF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<90°),在旋轉(zhuǎn)過(guò)程中,直線DE,AC相交于點(diǎn)M,直線DF,BC相交于點(diǎn)N.
(1)如圖1,當(dāng)α=60°時(shí),求證:DM=BN;
(2)在上述旋轉(zhuǎn)過(guò)程中,的值是一個(gè)定值嗎?請(qǐng)?jiān)趫D2中畫(huà)出圖形并加以證明;
(3)如圖3,在上述旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)C落在斜邊EF上時(shí),求兩個(gè)三角形重合部分四邊形CMDN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,正方形ABCD,M在CB延長(zhǎng)線上,N在DC延長(zhǎng)線上,∠MAN=45°.求證:MN=DN-BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com