【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,下列結(jié)論:①;②;③;④若是該拋物線上的點,則;其中正確的有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
根據(jù)拋物線的對稱軸可判斷①;由拋物線與x軸的交點及拋物線的對稱性可判斷②;由x=-1時y>0可判斷③;根據(jù)拋物線的開口向下且對稱軸為直線x=-2知圖象上離對稱軸水平距離越小函數(shù)值越大,可判斷④.
∵拋物線的對稱軸為直線,
∴,所以①正確;
∵與x軸的一個交點在(-3,0)和(-4,0)之間,
∴由拋物線的對稱性知,另一個交點在(-1,0)和(0,0)之間,
∴拋物線與y軸的交點在y軸的負半軸,即c<0,故②正確;
∵由②、①知,時y>0,且,
即>0,所以③正確;
∵點與點關于對稱軸直線對稱,
∴,
∵拋物線的開口向下,且對稱軸為直線,
∴當,函數(shù)值隨的增大而減少,
∵,
∴,
∴,故④錯誤;
綜上:①②③正確,共3個,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是實數(shù).
(1)若q=0時,方程有兩個不同的實數(shù)根x1x2,且,求實數(shù)p的值.
(2)若方程有三個不同的實數(shù)根x1、x2、x3,且,求實數(shù)p和q的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點D,連接AC,CD.則下列結(jié)論中錯誤的是( 。
①AC=CD;②AD=BD;③+=;④CD平分∠ACB
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線DB⊥AD,BC=3,BD=4.點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動(點P不與點A,B重合),點N為AP的中點,過點N作NM⊥AB交折線AD﹣DC于點M,以MN,NP為邊作矩形MNPQ.設點P運動的時間為t(s).
(1)求線段PQ的長;(用含t的代數(shù)式表示)
(2)求點Q落在BD上時t的值;
(3)設矩形MNPQ與△ABD重疊部分圖形的面積為S平方單位,當此重疊部分為四邊形時,求S與t之間的函數(shù)關系式;
(4)若點D關于直線AB的對稱點為點D',點B關于直線PQ的對稱點為點B',請直接寫出直線B'D'與ABCD各邊所在直線平行或垂直的所有t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖由長為a,寬為b的矩形、(2m+1)個長為4,寬為1的小矩形(為正整數(shù))和若干個小圓組成,其中小圓的直徑與小矩形的寬相等.
(1)當m=1時,a= ,b= ;
(2)當a=24時,求b的值;
(3)a的值能否等于30?請通過計算說明理由;
(4)直接寫出a與b的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點在反比例函數(shù)的圖像上.
(1)求a的值;
(2)如果直線y=x+b也經(jīng)過點A,且與x軸交于點C,連接AO,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的兩點,且BC平分∠ABD,AD分別與BC,OC相交于點E,F,則下列結(jié)論不一定成立的是( )
A.OC∥BDB.AD⊥OCC.△CEF≌△BEDD.AF=FD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=6,BC=5,AC=4,D是線段AB上一點,且DB=4,過點D作DE與線段AC相交于點E,使以A,D,E為頂點的三角形與△ABC相似,求DE的長.請根據(jù)下列兩位同學的交流回答問題:
(1)寫出正確的比例式及后續(xù)解答;
(2)指出另一個錯誤,并給予正確解答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于( 。
A.20B.24C.﹣20D.﹣24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com