【題目】如圖,、分別表示步行與騎車(chē)在同一路上行駛的路程(千來(lái))與時(shí)間(小時(shí))之間的關(guān)系.

1出發(fā)時(shí)與相距______千米.

2走了一段路后,自行車(chē)發(fā)生故障,進(jìn)行修理,所用的時(shí)間是______小時(shí).

3出發(fā)后______小時(shí)與相遇.

4)求出行走的路程與時(shí)間的函數(shù)關(guān)系式.

5)若的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),那么幾小時(shí)與相遇?相遇點(diǎn)離的出發(fā)點(diǎn)多少千米?請(qǐng)同學(xué)們?cè)趫D中畫(huà)出這個(gè)相遇點(diǎn)

【答案】110;(21;(33;(4;(5小時(shí)與相遇,相遇點(diǎn)離的出發(fā)點(diǎn)千米.

【解析】

1)從圖上可看出B出發(fā)時(shí)與A相距10千米;

2)修理的時(shí)間就是路程不變的時(shí)間是1.5-0.5=1小時(shí);

3)從圖象看出3小時(shí)時(shí),兩個(gè)圖象相交,所以3小時(shí)時(shí)相遇;

4St的函數(shù)關(guān)系是一次函數(shù),設(shè)函數(shù)是為S=kx+t,過(guò)(0,10)和(322.5),從而可求出關(guān)系式;

5)不發(fā)生故障時(shí),B的行走的路程和時(shí)間是正比例關(guān)系,設(shè)函數(shù)式為y=kx,過(guò)(0.57.5)點(diǎn),求出函數(shù)式,從而求出相遇的時(shí)間,從而求出路程.

1B出發(fā)時(shí)與A相距10千米,

故答案為:10

2)修理自行車(chē)的時(shí)間為:1.5-05=1小時(shí),

故答案為:1;

33小時(shí)時(shí)相遇,

故答案為:3

4)設(shè)行走的路程與時(shí)間的關(guān)系式為:,

由圖可知,函數(shù)圖象經(jīng)過(guò)點(diǎn),,

,解得

5)設(shè)發(fā)生故障前的函數(shù)圖象表達(dá)式為:,

由圖知,圖象過(guò)點(diǎn),代入中得,

聯(lián)立方程組,解得

∴若的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),

小時(shí)與相遇,相遇點(diǎn)離的出發(fā)點(diǎn)千米.

在圖中畫(huà)出相遇點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B40),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);當(dāng)1x4時(shí),有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車(chē)共游客租賃使用,假定每輛觀光車(chē)一天內(nèi)最多只能出租一次,且每輛車(chē)的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營(yíng)運(yùn)規(guī)律如下:當(dāng)x不超過(guò)100元時(shí),觀光車(chē)能全部租出;當(dāng)x超過(guò)100元時(shí),每輛車(chē)的日租金每增加5元,租出去的觀光車(chē)就會(huì)減少1輛.已知所有觀光車(chē)每天的管理費(fèi)是1100元.

1)優(yōu)惠活動(dòng)期間,為使觀光車(chē)全部租出且每天的凈收入為正,則每輛車(chē)的日租金至少應(yīng)為多少元?(注:凈收入=租車(chē)收入管理費(fèi))

2)當(dāng)每輛車(chē)的日租金為多少元時(shí),每天的凈收入最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,ABBC,點(diǎn)DBC邊上任意一點(diǎn)(B、C不重合),以BD為直角邊構(gòu)造等腰直角三角形BDE,FAD的中點(diǎn).

(1)將△BDE繞點(diǎn)B旋轉(zhuǎn),當(dāng)點(diǎn)EF重合時(shí),求證:∠BAE+BCD45°.

(2)將△BDE繞點(diǎn)B旋轉(zhuǎn),當(dāng)點(diǎn)FBE上且ABAD時(shí),求證:2CDBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年,國(guó)家大力提倡從純?nèi)加推?chē)向新能源汽車(chē)轉(zhuǎn)型.某汽車(chē)制造企業(yè)推出了一款新型油電混合動(dòng)力汽車(chē)(在行駛過(guò)程中,既可以使用汽油驅(qū)動(dòng)汽年,也可以使用電力驅(qū)動(dòng)汽車(chē),汽油驅(qū)動(dòng)和電力驅(qū)動(dòng)不同時(shí)工作).經(jīng)試驗(yàn),該型汽車(chē)從甲地駛向乙地,只用汽油進(jìn)行驅(qū)動(dòng),費(fèi)用為56元,只用電力進(jìn)行驅(qū)動(dòng),費(fèi)用為20.已知每行駛1千米,只用汽油驅(qū)動(dòng)的費(fèi)用比只用電力驅(qū)動(dòng)的費(fèi)用多0.36.

(1)求每行駛1千米,只用汽油驅(qū)動(dòng)的費(fèi)用.

(2)要使從甲地到乙地所需要的燃油費(fèi)用和電力費(fèi)用不超過(guò)38元,則至少要用電力驅(qū)動(dòng)行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,∠CAB=90°,AC=AB=3,△CDE中,CDE=90°,CD=DE=5,連接BE,取BE中點(diǎn)F,連接AF、DF.

(1)如圖1,若C、B、E三點(diǎn)共線,H為BC中點(diǎn).

直接指出AF與DF的關(guān)系   

直接指出FH的長(zhǎng)度   ;

(2)將圖(1)中的CDE繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)a(如圖2,0°<α<180°),試確定AF與DF的關(guān)系,并說(shuō)明理由;

(3)在(2)中,若AF=,請(qǐng)直接指出點(diǎn)F所經(jīng)歷的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠甲、乙兩個(gè)車(chē)間各有工人200人,為了解這兩個(gè)車(chē)間工人的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù)從甲、乙兩個(gè)車(chē)間各抽取20名工人進(jìn)行生產(chǎn)技能測(cè)試,測(cè)試成績(jī)?nèi)缦拢?/span>

甲:78 86 74 85 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77

乙:93 67 88 81 72 81 94 83 77 83 80 81 64 81 73 78 82 80 70 52

整理數(shù)據(jù)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤99

0

_____

11

______

1

1

2

5

10

______

(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,7079分為生產(chǎn)技能良好,6069分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

平均數(shù)

中位數(shù)

眾數(shù)

_____

77.5

75

78

_____

______

得出結(jié)論可以推斷_____車(chē)間工人的生產(chǎn)技能水平較高,理由為______.(至少?gòu)膬蓚(gè)角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

1)在網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(﹣2,4),點(diǎn)B的坐標(biāo)為(﹣42);

2)在第二象限內(nèi)的格點(diǎn)上畫(huà)一點(diǎn)C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù).

①此時(shí)點(diǎn)C的坐標(biāo)為   ,△ABC的周長(zhǎng)為   (結(jié)果保留根號(hào));

②畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△AB'C(點(diǎn)A,BC的對(duì)應(yīng)點(diǎn)分別A',B'C),并寫(xiě)出AB,C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案