如圖,直線AB與坐標軸分別交于點A、點B,且OA、OB的長分別為方程x2-6x+8=0的兩個根(OA<OB),點C在y軸上,且OA︰AC=2︰5,直線CD垂直于直線AB于點P,交x軸于點D.
(1)求出點A、點B的坐標.
(2)請求出直線CD的解析式.
(3)若點M為坐標平面內任意一點,在坐標平面內是否存在這樣的點M,使以點B、P、D、M為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
(1)A(0,2),B(-4,0);(2)直線CD的解析式:yCD=-2x+7;(3)存在,P1(-5.5 , 3),P2(9.5 , 3),P3(-2.5 , -3).
【解析】
試題分析:(1)根據(jù)一元二次方程的解法得出OA=2,OB=4,即可得出的A,B的坐標;
(2)首先利用角之間的關系得出△BOA∽△COD,即可得出D點的坐標,再利用待定系數(shù)法求一次函數(shù)解析式;
(3)先求出P點坐標(2,3),再根據(jù)平行四邊形的性質,當PM=BD,M可在第一象限或第二象限,以及BM=PD時M在第三象限分別分析直接得出答案.
試題解析:(1)∵
∴
∵OA、OB為方程的兩個根,且OA<OB
∴OA=2,OB=4,
∴ A(0,2),B(-4,0),
(2)∵OA:AC=2:5
∴ AC=5
∴OC=OA+AC=2+5=7
∴ C(0,7),
∵∠BAO=∠CAP,∠CPB=∠BOA=90O
∴∠PBD=∠OCD
∵∠ BOA=∠COD=90O
∴△BOA∽△COD
∴=
∴ OD===,
∴D(,0)
設直線CD的解析式為
把x=0,y=7;x=,y=0分別代入得:
∴,
∴yCD=-2x+7,
(3)存在,P1(-5.5,3),P2(9.5,3),P3(-2.5,-3).
考點:一次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
m |
x |
m |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年四川省內江市九年級第一學期期末考試數(shù)學試卷(解析版) 題型:解答題
如圖,直線AB分別與兩坐標軸交于點A(4,0).B(0,8),點C的坐標為(2,0).
(1)求直線AB的解析式;
(2)在線段AB上有一動點P.
①過點P分別作x,y軸的垂線,垂足分別為點E,F,若矩形OEPF的面積為6,求點P的坐標.
②連結CP,是否存在點P,使與相似,若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com