【題目】如圖1,在四邊形ABCD內(nèi)接于⊙O,AB=AC,BD為⊙O的直徑,AE⊥BD,垂足為點(diǎn)E,交BC于點(diǎn)F.
(1)求證:FA=FB;
(2)如圖2,分別延長(zhǎng)AD,BC交于點(diǎn)G,點(diǎn)H為FG的中點(diǎn),連接DH,若tan∠ACB=,求證:DH為⊙O的切線;
(3)在(2)的條件下,若DA=3,求AE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)AE=2.
【解析】
(1)易得∠BAD=90°,∠AED=90°,根據(jù)余角的性質(zhì)得∠BAE=∠ADE,結(jié)合等腰三角形的性質(zhì)和圓周角定理,即可得到結(jié)論;
(2)由正切函數(shù)的定義得AB=AD, AG=AB,從而得AG=2AD,即點(diǎn)D為AG的中點(diǎn),進(jìn)而得DH∥AF,結(jié)合∠AED=90°,即可得到結(jié)論;
(3)根據(jù)正切三角函數(shù)的定義和勾股定理得AB=6,BD=3,結(jié)合三角形的面積公式,即可得到答案.
(1)∵BD為⊙O的直徑,
∴∠BAD=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BD,
∴∠AED=90°,
∴∠DAE+∠ADE=90°,
∴∠BAE=∠ADE,
∵AB=AC,
∴∠ABC=∠ACB,
又∵∠ACB=∠ADE,
∴∠ABC=∠ADE=∠BAE,
∴FA=FB;
(2)由(1)知,∠ABC=∠ACB=∠ADB,
∵tan∠ACB=,
∴tan∠ABC=tan∠ADB=,
又∵∠BAD=90°,
∴在Rt△BAD中,AB=AD,在Rt△BAG中,AG=AB,
∴AG=(AD)=2AD,
∴點(diǎn)D為AG的中點(diǎn),
又∵點(diǎn)H為FG的中點(diǎn),
∴DH∥AF,
由(1)知,∠AED=90°,
∴∠HDE=∠AED=90°,
∴DH⊥OD,
∴DH為⊙O的切線;
(3)∵AD=3,
∴AB=AD=6,
∴在Rt△ABD中,BD= =3,
∵S△ABD=ABAD=BDAE,
∴6×3=3×AE,
∴AE=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點(diǎn),B是頂點(diǎn)),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點(diǎn)C開(kāi)始不斷重復(fù)圖形W形成一組“波浪線”.若點(diǎn),在該“波浪線”上,則m的值為________,n的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的邊上一動(dòng)點(diǎn),矩形兩邊長(zhǎng)AB、BC長(zhǎng)分別為15和20,那么P到矩形兩條對(duì)角線AC和BD的距離之和是( )
A.6B.12C.24D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為測(cè)量某建筑物AB的高度,在離該建筑物底部20m的點(diǎn)C處,目測(cè)建筑物頂端A處,視線與水平線夾角∠ADE為38.5°,目高CD為1.6m.求建筑物AB的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):sin38.5°=0.623,cos38.5°=0.783,tan38.5°=0.795)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD 是菱形ABCD 的對(duì)角線,∠A=30°.
(1)請(qǐng)用尺規(guī)作圖法,作AB 的垂直平分線EF,垂足為E,交AD 于F;(不要 求寫(xiě)作法,保留作圖痕跡)
(2)在(1)的條件下,連接BF,求∠DBF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形 ABCD 中,AE 平分∠BAD 交邊 BC 于 E,DF 平分∠ADC 交邊 BC 于 F,若 AD=11,EF=5,則 AB= ___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com