【題目】如圖,已知A、B、C是數(shù)軸上的三點,點C表示的數(shù)是6,點B與點C之間的距離是4,點B與點A的距離是12,點P為數(shù)軸上一動點.
(1)數(shù)軸上點A表示的數(shù)為 .點B表示的數(shù)為 ;
(2)數(shù)軸上是否存在一點P,使點P到點A、點B的距離和為16,若存在,請求出此時點P所表示的數(shù);若不存在,請說明理由;
(3)點P以每秒1個單位長度的速度從C點向左運動,點Q以每秒2個單位長度從點B出發(fā)向左運動,點R從點A以每秒5個單位長度的速度向右運動,它們同時出發(fā),運動的時間為t秒,請求點P與點Q,點R的距離相等時t的值.
【答案】(1)-10;2 (2)存在;﹣12或4 (3)或4
【解析】
(1)結合數(shù)軸可知點A和點B都在點C的左邊,且點A小于0,在根據(jù)題意列式計算即可得到答案;
(2)因為AB=12,則P不可能在線段AB上,所以分兩種情況:
①當點P在BA的延長線上時,②當點P在AB的延長線上時,進行討論,即可得到答案;
(3)根據(jù)題意“t秒P點到點Q,點R的距離相等”,則此時點P、Q、R所表示的數(shù)分別是6﹣t,2﹣2t,﹣10+5t,分①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t)兩種情況,計算即可得到答案.
解:(1)由題意可知點A和點B都在點C的左邊,且點A小于0,則由題意可得數(shù)軸上點B表示的數(shù)為6-4=2,點A表示的數(shù)為2-10=﹣10,故答案為:﹣10,2;
(2)∵AB=12,
∴P不可能在線段AB上,
所以分兩種情況:
①如圖1,當點P在BA的延長線上時,PA+PB=16,
∴PA+PA+AB=16,
2PA=16﹣12=4,
PA=2,
則點P表示的數(shù)為﹣12;
②如圖2,當點P在AB的延長線上時,同理得PB=2,
則點P表示的數(shù)為4;
綜上,點P表示的數(shù)為﹣12或4;
(3)由題意得:t秒P點到點Q,點R的距離相等,則此時點P、Q、R所表示的數(shù)分別是6﹣t,2﹣2t,﹣10+5t,
①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),解得t=;
②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t),解得t=4;
答:點P與點Q,點R的距離相等時t的值是或4秒.
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=﹣x+8與x軸、y軸分別交于點A和點B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的函數(shù)解析式是( 。
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉可得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,完成下列說理過程
如圖,點A,O,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
解:(1)如圖,因為OD是∠AOC的平分線,
所以∠COD =∠AOC.
因為OE是∠BOC 的平分線,
所以 =∠BOC.
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知∠BOE=∠COE = -∠COD= °.
所以∠AOE= -∠BOE = °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標號為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD滿足AB:BC=1: ,把矩形ABCD對折,使CD與AB重合,得折痕EF,把矩形ABFE繞點B逆時針旋轉90°,得到矩形A′BF′E′,連結E′B,交A′F′于點M,連結AC,交EF于點N,連結AM,MN,若矩形ABCD面積為8,則△AMN的面積為( )
A.4
B.4
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com