【題目】如圖,已知A、B、C是數(shù)軸上的三點,點C表示的數(shù)是6,點B與點C之間的距離是4,點B與點A的距離是12,點P為數(shù)軸上一動點.

1)數(shù)軸上點A表示的數(shù)為   .點B表示的數(shù)為   ;

2)數(shù)軸上是否存在一點P,使點P到點A、點B的距離和為16,若存在,請求出此時點P所表示的數(shù);若不存在,請說明理由;

3)點P以每秒1個單位長度的速度從C點向左運動,點Q以每秒2個單位長度從點B出發(fā)向左運動,點R從點A以每秒5個單位長度的速度向右運動,它們同時出發(fā),運動的時間為t秒,請求點P與點Q,點R的距離相等時t的值.

【答案】(1)-10;2 (2)存在;﹣124 34

【解析】

1)結合數(shù)軸可知點A和點B都在點C的左邊,且點A小于0,在根據(jù)題意列式計算即可得到答案;

2)因為AB12,則P不可能在線段AB上,所以分兩種情況:

①當點PBA的延長線上時,②當點PAB的延長線上時,進行討論,即可得到答案;

3)根據(jù)題意“tP點到點Q,點R的距離相等”,則此時點PQ、R所表示的數(shù)分別是6t22t,﹣10+5t,分①6t﹣(22t)=6t﹣(﹣10+5t),②6t﹣(22t)=(﹣10+5t)﹣(6t)兩種情況,計算即可得到答案.

解:(1)由題意可知點A和點B都在點C的左邊,且點A小于0,則由題意可得數(shù)軸上點B表示的數(shù)為6-4=2,點A表示的數(shù)為2-10=10,故答案為:﹣10,2;

2)∵AB12,

P不可能在線段AB上,

所以分兩種情況:

①如圖1,當點PBA的延長線上時,PA+PB16,

PA+PA+AB16,

2PA16124,

PA2,

則點P表示的數(shù)為﹣12;

②如圖2,當點PAB的延長線上時,同理得PB2,

則點P表示的數(shù)為4

綜上,點P表示的數(shù)為﹣124

3)由題意得:tP點到點Q,點R的距離相等,則此時點P、QR所表示的數(shù)分別是6t,22t,﹣10+5t

6t﹣(22t)=6t﹣(﹣10+5t),解得t

6t﹣(22t)=(﹣10+5t)﹣(6t),解得t4

答:點P與點Q,點R的距離相等時t的值是4秒.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=﹣x+8x軸、y軸分別交于點A和點B,MOB上的一點,若將ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的函數(shù)解析式是( 。

A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),點B、C、E在同一直線上

1)求證:;

2)若,于點于點,請直接寫出圖(2)中所有與互余的角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉中心旋轉180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉可得到A2B2C2,請直接寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點AO,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC

1)求∠DOE的度數(shù);

2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD =AOC

因為OE是∠BOC 的平分線,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標號為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,BQ平分∠ABPCQ平分∠ACP,∠BACα,∠BPCβ,則∠BQC_________.(用αβ表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD滿足AB:BC=1: ,把矩形ABCD對折,使CD與AB重合,得折痕EF,把矩形ABFE繞點B逆時針旋轉90°,得到矩形A′BF′E′,連結E′B,交A′F′于點M,連結AC,交EF于點N,連結AM,MN,若矩形ABCD面積為8,則△AMN的面積為( )

A.4
B.4
C.2
D.1

查看答案和解析>>

同步練習冊答案