(2007•紹興)如圖,在菱形ABCD中,對角線AC、BD相交于點O,E為BC的中點,則下列式子中一定成立的是( )

A.AC=2OE
B.BC=2OE
C.AD=OE
D.OB=OE
【答案】分析:根據(jù)菱形的性質和直角三角形斜邊上的中線等于斜邊的一半得B正確.
解答:解:A不正確:∵E為BC的中點,∴OE為△ABC的中位線,OE=AB,∴只有當AC=AB時成立;
B正確:∵四邊形是菱形,∴AB=BC,OE為△ABC的中位線OE=AB,故BC=2OE;
C不正確:∵四邊形是菱形,∴AB=AD,OE為△ABC的中位線OE=AB,故AD≠OE;
D不正確:只有當DB=AB時原式成立.
故選B.
點評:本題考查了三角形中位線定理及菱形的性質的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年上海市普陀區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2007•紹興)如圖,在平面直角坐標系xOy中,O為原點,點A、C的坐標分別為(2,0)、(1,).將△AOC繞AC的中點旋轉180°,點O落到點B的位置,拋物線y=ax2-2x經過點A,點D是該拋物線的頂點.
(1)求證:四邊形ABCO是平行四邊形;
(2)求a的值并說明點B在拋物線上;
(3)若點P是線段OA上一點,且∠APD=∠OAB,求點P的坐標;
(4)若點P是x軸上一點,以P、A、D為頂點作平行四邊形,該平行四邊形的另一頂點在y軸上,寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•紹興)如圖,在平面直角坐標系xOy中,O為原點,點A、C的坐標分別為(2,0)、(1,).將△AOC繞AC的中點旋轉180°,點O落到點B的位置,拋物線y=ax2-2x經過點A,點D是該拋物線的頂點.
(1)求證:四邊形ABCO是平行四邊形;
(2)求a的值并說明點B在拋物線上;
(3)若點P是線段OA上一點,且∠APD=∠OAB,求點P的坐標;
(4)若點P是x軸上一點,以P、A、D為頂點作平行四邊形,該平行四邊形的另一頂點在y軸上,寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年浙江省紹興市中考數(shù)學試卷(解析版) 題型:解答題

(2007•紹興)如圖,在平面直角坐標系xOy中,O為原點,點A、C的坐標分別為(2,0)、(1,).將△AOC繞AC的中點旋轉180°,點O落到點B的位置,拋物線y=ax2-2x經過點A,點D是該拋物線的頂點.
(1)求證:四邊形ABCO是平行四邊形;
(2)求a的值并說明點B在拋物線上;
(3)若點P是線段OA上一點,且∠APD=∠OAB,求點P的坐標;
(4)若點P是x軸上一點,以P、A、D為頂點作平行四邊形,該平行四邊形的另一頂點在y軸上,寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的對稱》(01)(解析版) 題型:選擇題

(2007•紹興)如圖的方格紙中,左邊圖形到右邊圖形的變換是( )

A.向右平移7格
B.以AB的垂直平分線為對稱軸作軸對稱變換,再以AB為對稱軸作軸對稱變換
C.繞AB的中點旋轉180°,再以AB為對稱軸作軸對稱
D.以AB為對稱軸作軸對稱,再向右平移7格

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(04)(解析版) 題型:填空題

(2007•紹興)如圖,矩形ABCD的邊AB在x軸上,且AB的中點與原點重合,AB=2,AD=1,過定點Q(0,2)和動點P(a,0)的直線與矩形ABCD的邊有公共點,則實數(shù)a的取值范圍是   

查看答案和解析>>

同步練習冊答案