【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在邊AB上的點D處,已知MN∥AB,MC=6,NC=2,則四邊形MABN的面積是___________.

【答案】18

【解析】

如圖,連接CD,與MN交于點E,根據(jù)折疊的性質(zhì)可知CDMN,CE=DE.再根據(jù)相似三角形的判定可知△MNC△ABC,再根據(jù)相似三角形的面積之比等于相似比的平方.由圖可知四邊形ABNM的面積等于△ABC的面積減去△MNC的面積.

:連接CD,交MN于點E.

△ABC沿直線MN翻折后,頂點C恰好落在邊AB上的點D處,

CDMN,CE=DE.

∵MN∥AB,

△MNC△ABC, CDAB,

===4.

=MCCN=62=6,

=24,

∴四邊形ACNM=-

=24-6

=18

故答案是18.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲進行了10次射苦練,平均成績?yōu)?/span>9環(huán),且前9次的成績(單位:環(huán))依次為:8,10,9,10,7,9,10,8,10.

(1)求甲第10次的射擊成績:

(2:求甲這10次射擊成績的方差:

(3)乙在相同情況下也進行了10次射擊訓(xùn)練,平均成績?yōu)?/span>9環(huán),方差為1.6環(huán),請問從甲和乙兩個人中選一個去參加比賽,你認為哪個去更合適?并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD平分BC平分ADF

(1)說明四邊形AECF為平行四邊形;

(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,是等邊三角形,為對角線(不含點)上任意一點,將繞點逆時針旋轉(zhuǎn)得到,連接

1)證明:

2)當點在何處時,的值最小,并說明理由;

3)當的最小值為時,則正方形的邊長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是平行四邊形ABCD對角線BD上的動點,點MAD的中點,已知AD=8,AB=10,ABD=45°,把平行四邊形ABCD繞著點A按逆時針方向旋轉(zhuǎn),點P的對應(yīng)點是點Q,則線段MQ的長度的最大值與最小值的差為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形中,點的坐標分別為,,點在第一象限.動點在正方形的邊上,從點出發(fā)沿勻速運動,同時動點以相同速度在軸上運動,當點運動到點時,兩點同時停止運動,設(shè)運動時間為秒.當點在邊上運動時,點的橫坐標(單位長度)關(guān)于運動時間()的函數(shù)圖象如圖2所示.

1)正方形邊長_____________,正方形頂點的坐標為__________________;

2)點開始運動時的坐標為__________,點的運動速度為_________單位長度/秒;

3)當點運動時,點軸的距離為,求的函數(shù)關(guān)系式;

4)當點運動時,過點分別作軸,軸,垂足分別為點,且點位于點下方,能否相似,若能,請直接寫出所有符合條件的的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國際上通常用恩格爾系數(shù)(記作n)來衡量一個國家和地區(qū)人民的生活水平的狀況,它的計算公式:n=x/y(x:家庭食品支出總額;y:家庭消費支出總額).各種家庭類型的n如下表:

已知王先生居住地2008年比2003年食品價格上升了25%,該家庭在2008年購買食品和2003年完全相同的情況下多支出2000元,并且y=2x+3600(單位:元),則該家庭2003年屬于(  )

家庭類型

貧困

溫飽

小康

富裕

n

n>60%

50%<n≤60%

40%<n≤50%

30%<n≤40%

A. 貧困 B. 溫飽 C. 小康 D. 富裕

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖①,在矩形ABCD中,以點A為直角頂點作Rt△AEF,連結(jié)BEDF,直線DF交直線BE于點G,DGAB交于點H,且

(1)求證:△ABE∽△ADF

(2)求證:DGBE;

拓展:如圖②,在ABCD中,以點A為頂點作∠EAF=∠BAD,連結(jié)BEDF,直線DF交直線BE于點G,且,若∠BCD=130°,則∠EGD的大小為   度.

查看答案和解析>>

同步練習冊答案