【題目】已知:如圖,AM是△ABC的中線,D是線段AM的中點(diǎn),AMACAEBC.求證:四邊形EBCA是等腰梯形.

【答案】見(jiàn)解析.

【解析】

根據(jù)三角形判定定理先證明三角形ADE與三角形MDC全等,得出AE=MC=MB,得出四邊形AEBM是平行四邊形,最后可證明四邊形EBCA是等腰梯形.

證明:∵AEBC

∴∠AED=∠MCD,

D是線段AM的中點(diǎn),

ADMD,

ADEMDC中,,

∴△ADE≌△MDCAAS),

AEMC,

AMABC的中線,

MBMC

AEMB,

AEMB

∴四邊形AEBM是平行四邊形,

BEAM,

AMAC,

BEAC,

AEBCBEAC不平行,

∴四邊形EBCA是梯形,

∴梯形EBCA是等腰梯形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,A是數(shù)軸上位于點(diǎn)B右側(cè)的一點(diǎn),且AB=26動(dòng)點(diǎn)PA點(diǎn)出發(fā),每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt>s)秒.

(1)數(shù)軸上點(diǎn)B表示的數(shù)______點(diǎn)P表示的數(shù)______(用含 t 的代數(shù)式表示)

(2)MAP的中點(diǎn)NBP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是______.

(3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問(wèn)多少秒時(shí)PQ之間的距離恰好等于2?

(4)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)PQ同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)寫出數(shù)軸上點(diǎn)B表示的數(shù) _______,點(diǎn)P表示的數(shù)________(用含t的代數(shù)式表示);

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?(5分)

3)若MAP的中點(diǎn),NPB的中點(diǎn).點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng);(5分)

4)若點(diǎn)D是數(shù)軸上一點(diǎn),點(diǎn)D表示的數(shù)是x,請(qǐng)你探索式子|x+6|+|x-8|是否有最小值?如果有,直接寫出最小值;如果沒(méi)有,說(shuō)明理由.(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在燈塔O處觀測(cè)到輪船A位于北偏西54°的方向,同時(shí)輪船B在南偏西15°的方向.

1)∠AON   °;∠AOE   °;

2)求∠WOB的補(bǔ)角及∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上的A1A2,A3A4,……A20,這20個(gè)點(diǎn)所表示的數(shù)分別是a1,a2,a3a4,……a20.若A1A2A2A3=……=A19A20,且a320,|a1a4|12

1)線段A3A4的長(zhǎng)度=   ;a2   

2)若|a1x|a2+a4,求x的值;

3)線段MNO點(diǎn)出發(fā)向右運(yùn)動(dòng),當(dāng)線段MN與線段A1A20開(kāi)始有重疊部分到完全沒(méi)有重疊部分經(jīng)歷了9秒.若線段MN5,求線段MN的運(yùn)動(dòng)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,梯形ABCD中,ABCD,BCAB,ABAD,連接BD(如圖a),點(diǎn)P沿梯形的邊,從點(diǎn)ABCDA移動(dòng),設(shè)點(diǎn)P移動(dòng)的距離為xBPy

1)求證:∠A2CBD;

2)當(dāng)點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)C時(shí),yx的函數(shù)關(guān)系如圖(b)中的折線MNQ所示,試求CD的長(zhǎng).

3)在(2)的情況下,點(diǎn)PABCDA移動(dòng)的過(guò)程中,△BDP是否可能為等腰三角形?若能,請(qǐng)求出所有能使△BDP為等腰三角形的x的取值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣x2+x+4經(jīng)過(guò)A、B兩點(diǎn).

(1)寫出點(diǎn)A、點(diǎn)B的坐標(biāo);

(2)若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;

(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知代數(shù)式是關(guān)于的二次多項(xiàng)式.

1)若關(guān)于的方程的解是,求的值;

2)若當(dāng)時(shí),代數(shù)式的值為-39,求當(dāng)時(shí),代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示數(shù)點(diǎn)表示數(shù),表示點(diǎn)和點(diǎn)之間的距離,且滿足.

1)求,兩點(diǎn)之間的距離;

2)若在數(shù)軸上存在一點(diǎn),且,直接寫出點(diǎn)表示的數(shù);

3)若在原點(diǎn)處放一擋板,一小球甲從點(diǎn)處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),
①分別表示甲、乙兩小球到原點(diǎn)的距離(用t表示);
②求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案