在△CDE中,∠C=90°,CD,CE的長分別為m,n,且DE•cosD=cotE.
(1)求證m2=n;
(2)若m=2,拋物線y=a(x-m)2+n與直線y=3x+4交于A(x1,y1)和B(x2,y2)兩點(diǎn),且△AOB的面積為6(O為坐標(biāo)原點(diǎn)),求a的值;
(3)若是k2=
nm2
,c+l-b=0,拋物線y=k(x2+bx+c)與x軸只有一個(gè)交點(diǎn)在原點(diǎn)的右側(cè),試判斷拋物線與y軸的交點(diǎn)在y軸的正半軸還是負(fù)半軸,并證明你的結(jié)論.
分析:(1)由已知的三角函數(shù)得出DE•
CD
DE
=
CE
CD
,推出CD2=CE即可證明.
(2)解關(guān)于二次函數(shù)與一次函數(shù)組成的方程組,利用一元二次方程根與系數(shù)的關(guān)系即可求出AB的距離,再根據(jù)直線與x軸的交點(diǎn)可求出△AOB的高,根據(jù)其面積即可求出a的值.
(3)由k2=
n
m2
,c+l-b=0,可求出k、c的值,代入拋物線y=k(x2+bx+c),再根據(jù)拋物線y=k(x2+bx+c)與x軸只有一個(gè)交點(diǎn)可求出△的值,再另x=0,即可求出拋物線與y軸的交點(diǎn)坐標(biāo),根據(jù)△進(jìn)行判斷即可.
解答:(1)證明:由DE•cosD=cotE,有DE•
CD
DE
=
CE
CD

∴CD2=CE,
∴m2=n.

(2)解:由題意得
y=a(x-2)2+4
y=3x+4
,
即ax2-(4a+3)x+4a=0
∴x1+x2=
4a+3
a
,x1x2=4.
∴|x1-x2|=
(x1+x2)2-4x1x2

=
(4a+3)2
a2
-16
=
24a+9
a2
=
24a+9
|a|

∴|AB|=
240+90
|a|

又直線y=3x+4與y軸交于M(0,4),與x軸交于N(-
4
3
,0).
設(shè)OH=h垂直于MN,
則h=
4
10

1
2
240a+90
|a|
4
10
=6,
24a+9
=3|a|.
∴a=3或a=-
1
3


(3)∵k2=
n
m2
,c+l-b=0,
∴k2=
n
m2
=
4
22
=1,c+1-b=0,c=b-1,
拋物線y=k(x2+bx+c)可化為y=x2+bx+b-1,
∵拋物線與x軸只有一個(gè)交點(diǎn),在原點(diǎn)的右側(cè),
∴△=b2-4(b-1)=b2-4b+4=0,即b-1=
b2
4
>0
令x=0,則y=b-1=
b2
4
>0,
故拋物線與y軸的交點(diǎn)在y軸的正半軸.
點(diǎn)評:本題考查的是銳角三角函數(shù)的定義,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)及一元二次方程根與系數(shù)的關(guān)系,涉及面較廣,但難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,試判斷AB與AD,BE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在△CDE中,∠DCE=90°,CD=CE,DA⊥AB于A,EB⊥AB于B
求證:AB=AD+BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△CDE中,∠DCE=90°,CD=CE,直線AB經(jīng)過點(diǎn)C,DA⊥AB,EB⊥AB,垂足分別為A、B,試說明AC=BE的理由.
解:因?yàn)镈A⊥AB,EB⊥AB(已知)
所以∠A=∠(
垂線的性質(zhì)
垂線的性質(zhì)

因?yàn)椤螪CA=∠A+∠ADC(
外角的性質(zhì)
外角的性質(zhì)

即∠DCE+∠RCB=∠A+∠ADC.
又因?yàn)椤螪CE=90°,
所以∠
CDA
CDA
=∠ECB.
在△ADC和△ECB中,
∠A=∠B( 已證)
---------   (已證)
---------    (已證)

所以△ADC≌△ECB(
AAS
AAS

所以AC=BE(
全等三角形對應(yīng)邊相等
全等三角形對應(yīng)邊相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江西省撫州市臨川區(qū)羅湖中學(xué)數(shù)學(xué)中考模擬試卷(二)(解析版) 題型:解答題

在△CDE中,∠C=90°,CD,CE的長分別為m,n,且DE•cosD=cotE.
(1)求證m2=n;
(2)若m=2,拋物線y=a(x-m)2+n與直線y=3x+4交于A(x1,y1)和B(x2,y2)兩點(diǎn),且△AOB的面積為6(O為坐標(biāo)原點(diǎn)),求a的值;
(3)若是k2=,c+l-b=0,拋物線y=k(x2+bx+c)與x軸只有一個(gè)交點(diǎn)在原點(diǎn)的右側(cè),試判斷拋物線與y軸的交點(diǎn)在y軸的正半軸還是負(fù)半軸,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案