【題目】張師傅駕車從甲地到乙地,兩地相距500千米,汽車出發(fā)前油箱有油25升,途中加油若干升,加油前、后汽車都以100千米/小時(shí)的速度勻速行駛,已知油箱中剩余油量(升)與行駛時(shí)間(小時(shí))之間的關(guān)系如圖所示.以下說法正確的是( )
A.加油前油箱中剩余油量(升)與行駛時(shí)間(小時(shí))的函數(shù)關(guān)系是
B.途中加油30升
C.汽車加油后還可行駛3.75小時(shí)
D.汽車到達(dá)乙地時(shí)油箱中還余油9升
【答案】C
【解析】
A、設(shè)加油前油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))的函數(shù)關(guān)系式為y=kt+b,將(0,25),(2,9)代入,運(yùn)用待定系數(shù)法求解后即可判斷;
B、由題中圖象即可看出,途中加油量為30-9=21升;
C、先求出每小時(shí)的用油量,再求出汽車加油后行駛的時(shí)間即可;
D、先求出汽車從甲地到達(dá)乙地需要的時(shí)間,進(jìn)而得到需要的油量;然后用汽車油箱中原有的油量加上途中的加油量,再減去汽車行駛500千米需要的油量,得出汽車到達(dá)乙地時(shí)油箱中的余油量即可判斷.
解:A、設(shè)加油前油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))的函數(shù)關(guān)系式為y=kt+b.
將(0,25),(2,9)代入,
得,
解得,
所以y=-8t+25,故A選項(xiàng)錯(cuò)誤;
B、由圖象可知,途中加油:30-9=21(升),故B選項(xiàng)錯(cuò)誤;
C、由圖可知汽車每小時(shí)用油(25-9)÷2=8(升),
所以汽車加油后還可行駛:30÷8=3.75(小時(shí)),故C選項(xiàng)正確;
D、∵汽車從甲地到達(dá)乙地,所需時(shí)間為:500÷100=5(小時(shí)),
∴5小時(shí)耗油量為:8×5=40(升),
又∵汽車出發(fā)前油箱有油25升,途中加油21升,
∴汽車到達(dá)乙地時(shí)油箱中還余油:25+21-40=6(升),故D選項(xiàng)錯(cuò)誤.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D,以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D,與AB邊的另一個(gè)交點(diǎn)為E.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,∠B=30°.求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩,其答案為“山重水復(fù)疑無路”.
(1)小明回答該問題時(shí),對第二個(gè)字是選“重”還是選“窮”難以抉擇,若隨機(jī)選擇其中一個(gè),則小明回答正確的概率是 ;
(2)小麗回答該問題時(shí),對第二個(gè)字是選“重”還是選“窮”、第四個(gè)字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中有△ABC,建立平面直角坐標(biāo)系后,點(diǎn)O的坐標(biāo)是(0,0).
(1)以O(shè)為位似中心,作△A′B′C′∽△ABC,相似比為1:2,且保證△A′B′C′在第三象限;
(2)點(diǎn)B′的坐標(biāo)為(_______),______);
(3)若線段BC上有一點(diǎn)D,它的坐標(biāo)為(a,b),
那么它的對應(yīng)點(diǎn)D′的坐標(biāo)為(__________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決問題:有趣的勾股數(shù)組
定義:一般地,若三角形三邊長,,都是正整數(shù),且滿足,那么數(shù)組稱為勾股數(shù)組.
關(guān)于勾股數(shù)組的研究我國歷史上有過非常輝煌的成就,根據(jù)我國古代數(shù)學(xué)書《周髀算經(jīng)》記載,在約公元前1100年,人們就已經(jīng)知道“勾廣三,股修四,徑隅五”(古人把較短的直角邊稱為勾,較長直角邊稱為股,而斜邊則成稱為弦),即知道了勾股數(shù)組,后來人們發(fā)現(xiàn)并證明了勾股定理.
公元263年魏朝劉徽注《九章算術(shù)》,文中除提到勾股數(shù)組以外,還提到,,,等勾股數(shù)組.
設(shè),是兩個(gè)正整數(shù),且,三角形三邊長,,都是正整數(shù).
下表中的,,可以組成一些有規(guī)律的勾股數(shù)組:
2 | 1 | 3 | 4 | 5 |
3 | 2 | 5 | 12 | 13 |
4 | 1 | 15 | 8 | 17 |
4 | 3 | 7 | 24 | 25 |
5 | 2 | 21 | 20 | 29 |
5 | 4 | 9 | 40 | 41 |
6 | 1 | 35 | 12 | 37 |
6 | 5 | 11 | 60 | 61 |
7 | 2 | 45 | 28 | 53 |
7 | 4 | 33 | 56 | 65 |
7 | 6 | 13 | 84 | 85 |
請你仔細(xì)觀察這個(gè)表格,解答下列問題:
(1)表中和,的等量關(guān)系式是________;
(2)表中的勾股數(shù)組用只含,的代數(shù)式表示為________;
(3)小明通過研究表中數(shù)據(jù)發(fā)現(xiàn):若勾股數(shù)組中,弦與股的差為1,則勾股數(shù)的形式可表述為(,為正整數(shù)),請你用含的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月18日晚,蘇寧易購發(fā)布618全程戰(zhàn)報(bào):從6月1日到18日晚6點(diǎn),蘇寧依托線上線下全場景優(yōu)勢,逆勢增長.經(jīng)調(diào)查,蘇寧易購線上有甲乙兩家在銷售華為A手機(jī)、華為B電腦和華為C耳機(jī).已知每部A手機(jī)的利潤率為40%,每臺B電腦的利潤率為60%,每副C耳機(jī)的利潤率為30%,甲商家售出的B電腦和C耳機(jī)的數(shù)量都是A手機(jī)的數(shù)量的一半,獲得的總利潤為50%,乙商家售出的A手機(jī)的數(shù)量是B電腦的數(shù)量的一半,售出的C耳機(jī)的數(shù)量是B電腦的數(shù)量的,則乙商家獲得的總利潤率是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形A`B`C`是由三角形ABC經(jīng)過某種平移得到的,點(diǎn)A與點(diǎn)A`,點(diǎn)B與點(diǎn)B`,點(diǎn)C與點(diǎn)C`分別對應(yīng),觀察點(diǎn)與點(diǎn)坐標(biāo)之間的關(guān)系,解答下列問題:
分別寫出點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)A`、點(diǎn)B`、點(diǎn)C`的坐標(biāo),并說明三角形A`B`C`是由三角形ABC經(jīng)過怎樣的平移得到的.
若點(diǎn)是點(diǎn)通過中的平移變換得到的,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)片段展示:
【問題】
如圖①,在平面直角坐標(biāo)系中,拋物線y=a(x-2)2-4經(jīng)過原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為A,則a= ,點(diǎn)A的坐標(biāo)為 .
【操作】
將圖①中的拋物線在x軸下方的部分沿x軸翻折到x軸上方,如圖②.直接寫出翻折后的這部分拋物線對應(yīng)的函數(shù)解析式: .
【探究】
在圖②中,翻折后的這部分圖象與原拋物線剩余部分的圖象組成了一個(gè)“W”形狀的新圖象,則新圖象對應(yīng)的函數(shù)y隨x的增大而增大時(shí),x的取值范圍是 .
【應(yīng)用】結(jié)合上面的操作與探究,繼續(xù)思考:
如圖③,若拋物線y=(x-h)2-4與x軸交于A,B兩點(diǎn)(A在B左),將拋物線在x軸下方的部分沿x軸翻折,同樣,也得到了一個(gè)“W”形狀的新圖象.
(1)求A、B兩點(diǎn)的坐標(biāo);(用含h的式子表示)
(2)當(dāng)1<x<2時(shí),若新圖象的函數(shù)值y隨x的增大而增大,求h的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com