【題目】如圖,點(diǎn)E在DF上,點(diǎn)B在AC上,∠1=∠2,∠C=∠D.
試說(shuō)明:AC∥DF.將過(guò)程補(bǔ)充完整.
解:∵∠1=∠2(
∠1=∠3(
∴∠2=∠3(

∴∠C=∠ABD (
又∵∠C=∠D(
∴∠D=∠ABD(
∴AC∥DF(

【答案】已知;對(duì)頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯(cuò)角相等,兩直線平行
【解析】解:∵∠1=∠2( 已知),
∠1=∠3( 對(duì)頂角相等),
∴∠2=∠3( 等量代換),
∴BD∥CE( 同位角相等,兩直線平行),
∴∠C=∠ABD ( 兩直線平行,同位角相等),
又∵∠C=∠D( 已知),
∴∠D=∠ABD( 等量代換),
∴AC∥DF( 內(nèi)錯(cuò)角相等,兩直線平行),
故答案為:已知;對(duì)頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯(cuò)角相等,兩直線平行.
由條件結(jié)合對(duì)頂角相等可證明BD∥CE,可得到∠C=∠ABD,再結(jié)合條件可得到∠D=∠ABD,可證明AC∥DF,據(jù)此填空即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線y=x2+(2m1)x+m21經(jīng)過(guò)坐標(biāo)原點(diǎn),且當(dāng)x<0時(shí),y隨x的增大而減。

(1)求拋物線的解析式,并寫(xiě)出y<0時(shí),對(duì)應(yīng)x的取值范圍;

(2)設(shè)點(diǎn)A是該拋物線上位于x軸下方的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)D,再作ABx軸于點(diǎn)B,DCx軸于點(diǎn)C.

當(dāng)BC=1時(shí),直接寫(xiě)出矩形ABCD的周長(zhǎng);

設(shè)動(dòng)點(diǎn)A的坐標(biāo)為(a,b),將矩形ABCD的周長(zhǎng)L表示為a的函數(shù)并寫(xiě)出自變量的取值范圍,判斷周長(zhǎng)是否存在最大值?如果存在,求出這個(gè)最大值,并求出此時(shí)點(diǎn)A的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組數(shù)中,以a、b、c為邊的三角形不是直角三角形的是(

A. a=1.5,b=2,c=3 B. a=7b=24,c=25

C. a=6,b=8,c=10 D. a=0.3,b=0.4,c=0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)1,2,4,3,24,25,6,1,它們的平均數(shù)為_______,眾數(shù)為_______,中位數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,ADBC邊上的中線,FAD邊上的動(dòng)點(diǎn),EAC邊上一點(diǎn)AE2,當(dāng)EFCF取得最小值時(shí),∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=35°,求∠ACB的度數(shù);
②若∠ACB=150°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.
(3)請(qǐng)你動(dòng)手操作,現(xiàn)將三角尺ACD固定,三角尺BCE的CE邊與CA邊重合,繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)0°<∠ACE<180°且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫(xiě)出∠ACE角度所有可能的值(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,觀察圖象,回答問(wèn)題:

(1)點(diǎn)D的縱坐標(biāo)等于____

(2)點(diǎn)A的橫坐標(biāo)是方程______的解

(3)大于點(diǎn)B橫坐標(biāo)的x的值是不等式________的解

(4)點(diǎn)C的橫、縱坐標(biāo)是方程組_________的解

(5)小于點(diǎn)C橫坐標(biāo)的x的值是不等式__________的解

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①、②,解答下面各題:
(1)圖①中,∠AOB=55°,點(diǎn)P在∠AOB內(nèi)部,過(guò)點(diǎn)P作PE⊥OA,PF⊥OB,垂足分別為E、F,求∠EPF的度數(shù).
(2)圖②中,點(diǎn)P在∠AOB外部,過(guò)點(diǎn)P作PE⊥OA,PF⊥OB,垂足分別為E、F,那么∠P與∠O有什么關(guān)系?為什么?
(3)通過(guò)上面這兩道題,你能說(shuō)出如果一個(gè)角的兩邊分別垂直于另一個(gè)角的兩邊,則這兩個(gè)角是什么關(guān)系?
(4)如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角是什么關(guān)系?(請(qǐng)畫(huà)圖說(shuō)明結(jié)果,不需要過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:用2輛A型車(chē)和1輛B型車(chē)載滿貨物一次可運(yùn)貨10噸;用1輛A型車(chē)和2輛B型車(chē)載滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車(chē)a輛,B型車(chē)b輛,一次運(yùn)完,且恰好每輛車(chē)都載滿貨物.
根據(jù)以上信息,解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛車(chē)B型車(chē)都載滿貨物一次可分別運(yùn)貨多少噸?
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案;
(3)若A型車(chē)每輛需租金100元/次,B型車(chē)每輛需租金120元/次.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少租車(chē)費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案