【題目】如圖,在△ABC中,點D、E分別是邊AB、AC的中點,∠B=50°,∠A=26°,將△ABC沿DE折疊,點A的對應點是點A′,則∠AEA′的度數(shù)是( 。
A. 145° B. 152° C. 158° D. 160°
【答案】B
【解析】
試題根據(jù)三角形的內角和定理得到∠C=104°,再由中位線定理可得DE∥BC,∠ADE=∠B=50°,∠AED=∠C=104°,根據(jù)折疊的性質得∠DEA′=∠AED=104°,再求∠AEA′的度數(shù)即可.
解:∵∠B=50°,∠A=26°,
∴∠C=180°﹣∠B﹣∠A=104°,
∵點D、E分別是邊AB、AC的中點,
∴DE∥BC,
∴∠ADE=∠B=50°,∠AED=∠C=104°,
∵將△ABC沿DE折疊,
∴△AED≌△A′ED,
∴∠DEA′=∠AED=104°,
∴∠AEA′=360°﹣∠DEA′﹣∠AED=360°﹣104°﹣104°=152°.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】王紅有5張寫著以下數(shù)字的卡片,請按要求抽出卡片,完成下列各題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最小,最小值是 .
(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最大,最大值是 .
(3)從中取出除0以外的4張卡片,將這4個數(shù)字進行加、減、乘、除或乘方等混合運算,使結果為24,(注:每個數(shù)字只能用一次,如:23×[1﹣(﹣2)]),請另寫出一種符合要求的運算式子 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是等邊三角形,是等腰直角三角形,∠BAD=90°,AE⊥BD于點E.連CD分別交AE,AB于點F,G,過點A做AH⊥CD交BD于點H,則下列結論:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正確結論的個數(shù)為( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩列火車分別從A、B兩城同時勻速駛出,甲車開往B城,乙車開往A城.由于墨跡遮蓋,圖中提供的是兩車距B城的路程S甲(千米)、S乙(千米)與行駛時間t(時)的函數(shù)圖象的一部分.
(1)分別求出S甲、S乙與t的函數(shù)關系式(不必寫出t的取值范圍);
(2)求A、B兩城之間的距離,及t為何值時兩車相遇;
(3)當兩車相距300千米時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+3(1-k)(其中k為常數(shù),k≠0),k取不同數(shù)值時,可得不同直線,請?zhí)骄窟@些直線的共同特征.
實踐操作
(1)當k=1時,直線l1的解析式為 ,請在圖1中畫出圖象;當k=2時,直線l2的解析式為 ,請在圖2中畫出圖象;
探索發(fā)現(xiàn)
(2)直線y=kx+3(1-k)必經過點( , );
類比遷移
(3)矩形ABCD如圖2所示,若直線y=kx+k-2(k≠0)分矩形ABCD的面積為相等的兩部分,請在圖中直接畫出這條直線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中, , 交于 , 平分 ,,下面結論:① ;②是等邊三角形;③;④,其中正確的有
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“我國南宋著名數(shù)學家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=0.5千米,則該沙田的面積為________________平方千米.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com