如圖,a∥b,AB⊥BC,∠1=55°,則∠2的度數(shù)為


  1. A.
    35°
  2. B.
    45°
  3. C.
    55°
  4. D.
    125°
A
考點:平行線的性質;余角和補角.
分析:根據(jù)兩條直線平行,同位角相等,得∠1的同位角是55°.再根據(jù)平角的定義即可求得∠2.
解答:解:∵a∥b,
∴BC與b所夾銳角等于∠1=55°,
又AB⊥BC,
∴∠2=180°-90°-55°=35°
故選A.
點評:考查了平行線的性質以及平角的概念.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖所示,直線AB、CD相交于點O,作∠DOE=∠BOD,OF平分∠AOE,若∠AOC=20°,則∠EOF=
70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三條直線AB、CD、EF相交于同一點O,若∠AOE=2∠AOC,∠COF=60°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,點M是CE的中點,連接BM.
(1)如圖①,點D在AB上,連接DM,并延長DM交BC于點N,可探究得出BD與BM的數(shù)量關系為
 
;
(2)如圖②,點D不在AB上,(1)中的結論還成立嗎?如果成立,請證明;如果不成立,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、(初三)如圖,△ABC中,AB=AC,I為△ABC的內(nèi)心,AI的延長線交△ABC的外接圓于點D,過點I作BC的平行線分別交AB、AC于E、F,若O是△DEF外接圓的圓心.
證明:(1)O點在線段AD上;
(2)AB、AC是⊙O的切線.
(初二)如圖,四邊形ABCD中,∠ADC=60°,∠ABC=30°,DA=DC,求證,BD2=AB2+BC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)解不等式組:
x-2>0
2(x+1)≥3x-1.
,并把解集在數(shù)軸上表示出來.
(2)如圖,C是線段AB的中點,CD平分∠ACE,CE平分∠BCD,CD=CE.
①求證:△ACD≌△BCE;
②若∠D=50°,求∠B的度數(shù).

查看答案和解析>>

同步練習冊答案