【題目】若4a2+kab+9b2是一個(gè)完全平方式,則k=

【答案】±12
【解析】解:∵4a2+kab+9b2是一個(gè)完全平方式,
∴這兩個(gè)數(shù)是2a和3b,
∴kab=±2×2a3b,
解得k=±12.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解完全平方公式(首平方又末平方,二倍首末在中央.和的平方加再加,先減后加差平方).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸、軸分別交于點(diǎn),以線段為邊在第一象限作等邊

(1)若點(diǎn)在反比例函數(shù)的圖象上,求該反比例函數(shù)的解析式;

(2)點(diǎn)在第一象限,過點(diǎn)軸的垂線,垂足為,當(dāng)相切時(shí),點(diǎn)是否在(1)中反比例函數(shù)圖象上,如果在,求出點(diǎn)坐標(biāo);如果不在,請加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的有( )個(gè)

①對頂角相等,鄰補(bǔ)角互補(bǔ)

②兩條直線被第三條直線所截,同位角的平分線平行

③垂直于同一條直線的兩條直線互相平行

④過一點(diǎn)有且只有一條直線與已知直線平行

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為的等邊三角形中,邊上任意一點(diǎn),過點(diǎn)分別作,、分別為垂足.

(1)求證:不論點(diǎn)邊的何處時(shí)都有的長恰好等于三角形一邊上的高;

(2)當(dāng)的長為何值時(shí),四邊形的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為確保廣大居民家庭基本用水需求的同時(shí)鼓勵家庭節(jié)約用水,對居民家庭每戶每月用水量采用分檔遞增收費(fèi)的方式,每戶每月用水量不超過基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi).為對基本用水量進(jìn)行決策,隨機(jī)抽查戶居民家庭每戶每月用水量的數(shù)據(jù),整理繪制出下面的統(tǒng)計(jì)表:

(1)為確保%的居民家庭每戶每月的基本用水量需求,那么每戶每月的基本用水量最低應(yīng)確定為多少立方米?

(2)若將(1)中確定的基本用水量及其以內(nèi)的部分按每立方米元交費(fèi),超過基本用水量的部分按每立方米元交費(fèi).設(shè)表示每戶每月用水量(單位:),表示每戶每月應(yīng)交水費(fèi)(單位:元),求的函數(shù)關(guān)系式;

(3)某戶家庭每月交水費(fèi)是元,請按以上收費(fèi)方式計(jì)算該家庭當(dāng)月用水量是多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于O,EF過點(diǎn)O與AD,BC分別相交于E,F(xiàn),若AB=4,BC=5,OE=1.5,那么四邊形EFCD的周長為(
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù))的圖像分別交于點(diǎn)和點(diǎn),與坐標(biāo)軸分別交于點(diǎn)和點(diǎn)

(1)求直線的解析式;

(2)若點(diǎn)軸上一動點(diǎn),當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑作于點(diǎn),過點(diǎn)的切線于點(diǎn),交延長線于點(diǎn).

(1)求證:

(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC=AC=4,M為AB中點(diǎn),D是射線BC上的一動點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接ED、ME,點(diǎn)D在運(yùn)動過程中ME的最小值為

查看答案和解析>>

同步練習(xí)冊答案