【題目】今年以來,國務(wù)院連續(xù)發(fā)布了《關(guān)于加快構(gòu)建大眾創(chuàng)業(yè)萬眾創(chuàng)新支撐平臺的指導(dǎo)意見》等一系列支持性政策,各地政府高度重視、積極響應(yīng),中國掀起了大眾創(chuàng)業(yè)萬眾創(chuàng)新的新浪潮.某創(chuàng)新公司生產(chǎn)營銷A、B兩種新產(chǎn)品,根據(jù)市場調(diào)研,發(fā)現(xiàn)如下信息: 信息1:銷售A種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系y=ax2+bx,當(dāng)x=1時,y=7;當(dāng)x=2時,y=12.
信息2:銷售B種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系y=2x.
根據(jù)以上信息,解答下列問題:
(1)求a,b的值;
(2)該公司準(zhǔn)備生產(chǎn)營銷A、B兩種產(chǎn)品共10噸,請?jiān)O(shè)計(jì)一個生產(chǎn)方案,使銷售A、B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是多少?

【答案】
(1)解:將x=1,y=7;x=2,y=12代入y=ax2+bx得:

解得:

答:a=﹣1,b=8


(2)解:設(shè)購進(jìn)A產(chǎn)品m噸,購進(jìn)B產(chǎn)品(10﹣m)噸,銷售A、B兩種產(chǎn)品獲得的利潤之和為W元,

則W=﹣m2+8m+2(10﹣m)=﹣m2+6m+20=﹣(m﹣3)2+29,

∵﹣1<0,

∴當(dāng)m=2時,W有最大值29萬,

∴購進(jìn)A產(chǎn)品3噸,購進(jìn)B產(chǎn)品7噸,銷售A、B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是29萬元


【解析】(1)把兩組數(shù)據(jù)代入二次函數(shù)解析式,然后利用待定系數(shù)法求解即可;(2)設(shè)購進(jìn)A產(chǎn)品m噸,購進(jìn)B產(chǎn)品(10﹣m)噸,銷售A、B兩種產(chǎn)品獲得的利潤之和為W元,根據(jù)總利潤等于兩種產(chǎn)品的利潤的和列式整理得到W與m的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖(虛線部分為對稱軸),給出以下5個結(jié)論:①x≤1時,y隨x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正確的結(jié)論有(填上所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O過點(diǎn)B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為(
A.6
B.13
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時針方向排列),連接AB.
(1)當(dāng)OC∥AB時,∠BOC的度數(shù)為;
(2)連接AC,BC,當(dāng)點(diǎn)C在⊙O上運(yùn)動到什么位置時,△ABC的面積最大?并求出△ABC的面積的最大值;
(3)連接AD,當(dāng)OC∥AD時,①求出點(diǎn)C的坐標(biāo);②直線BC是否為⊙O的切線?請作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從1名男生和3名女生中隨機(jī)抽取參加“我愛鹽城”演講比賽的同學(xué).
(1)若抽取1名,恰好是男生的概率為
(2)若抽取2名,求恰好是2名女生的概率.(用樹狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,斜邊AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的兩根,Rt△ABC的面積為平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題引入】 已知:如圖BE、CF是△ABC的中線,BE、CF相交于G.求證: = =

證明:連結(jié)EF
∵E、F分別是AC、AB的中點(diǎn)
∴EF∥BC且EF= BC
= = =
【思考解答】
(1)連結(jié)AG并延長AG交BC于H,點(diǎn)H是否為BC中點(diǎn)(填“是”或“不是”)
(2)①如果M、N分別是GB、GC的中點(diǎn),則四邊形EFMN 是四邊形. ②當(dāng) 的值為時,四邊形EFMN 是矩形.
③當(dāng) 的值為時,四邊形EFMN 是菱形.
④如果AB=AC,且AB=10,BC=16,則四邊形EFMN的面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程與不等式組
(1)解方程: ;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣ |+(2016﹣π)0﹣2sin45°+( 2

查看答案和解析>>

同步練習(xí)冊答案