【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)y= 的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有(
A.①②
B.③④
C.②③
D.②④

【答案】C
【解析】解:①由x2﹣2x﹣8=0,得 (x﹣4)(x+2)=0,
解得x1=4,x2=﹣2,
∵x1≠2x2 , 或x2≠2x1 ,
∴方程x2﹣2x﹣8=0不是倍根方程.
故①錯(cuò)誤;②關(guān)于x的方程x2+ax+2=0是倍根方程,
∴設(shè)x2=2x1 ,
∴x1x2=2x12=2,
∴x1=±1,
當(dāng)x1=1時(shí),x2=2,
當(dāng)x1=﹣1時(shí),x2=﹣2,
∴x1+x2=﹣a=±3,
∴a=±3,故②正確;③關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,
∴x2=2x1 ,
∵拋物線y=ax2﹣6ax+c的對(duì)稱軸是直線x=3,
∴拋物線y=ax2﹣6ax+c與x軸的交點(diǎn)的坐標(biāo)是(2,0)和(4,0),
故③正確;④∵點(diǎn)(m,n)在反比例函數(shù)y= 的圖象上,
∴mn=4,
解mx2+5x+n=0得x1=﹣ ,x2=﹣
∴x2=4x1 ,
∴關(guān)于x的方程mx2+5x+n=0不是倍根方程;
故選C.
【考點(diǎn)精析】本題主要考查了求根公式和根與系數(shù)的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點(diǎn)O,延長(zhǎng)BC到E,使得CE=AD,連接DE.
(1)求證:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過(guò)點(diǎn)B.若OA2﹣AB2=12,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,拋物線y= 與x 軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱軸與拋物線交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.

(1)求拋物線的表達(dá)式;
(2)點(diǎn)E,F(xiàn) 分別是拋物線對(duì)稱軸CH 上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E 在點(diǎn)F 上方),且EF=1,求使四邊形BDEF 的周長(zhǎng)最小時(shí)的點(diǎn)E,F(xiàn) 坐標(biāo)及最小值;
(3)如圖2,點(diǎn)P 為對(duì)稱軸左側(cè),x 軸上方的拋物線上的點(diǎn),PQ⊥AC 交AC 于點(diǎn)Q,是否存在這樣的點(diǎn)P 使△PCQ與△ACH 相似,若存在請(qǐng)求出點(diǎn)P 的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+(2k﹣1)x+k2﹣1=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1 , x2滿足x12+x22=16+x1x2 , 求實(shí)數(shù)k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解同學(xué)們每月零花錢(qián)的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表. 調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2


請(qǐng)根據(jù)以上圖表,解答下列問(wèn)題:
(1)填空:這次被調(diào)查的同學(xué)共有人,a+b= , m=
(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請(qǐng)估計(jì)每月零花錢(qián)的數(shù)額x在60≤x<120范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)2﹣1+sin30°﹣|﹣2|;
(2)(﹣1)0﹣|3﹣π|+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形OABC的頂點(diǎn)A在x軸的正半軸上,OA=4,OC=2,點(diǎn)P,點(diǎn)Q分別是邊BC,邊AB上的點(diǎn),連結(jié)AC,PQ,點(diǎn)B1是點(diǎn)B關(guān)于PQ的對(duì)稱點(diǎn).

(1)若四邊形OABC為矩形,如圖1,
①求點(diǎn)B的坐標(biāo);
②若BQ:BP=1:2,且點(diǎn)B1落在OA上,求點(diǎn)B1的坐標(biāo);
(2)若四邊形OABC為平行四邊形,如圖2,且OC⊥AC,過(guò)點(diǎn)B1作B1F∥x軸,與對(duì)角線AC、邊OC分別交于點(diǎn)E、點(diǎn)F.若B1E:B1F=1:3,點(diǎn)B1的橫坐標(biāo)為m,求點(diǎn)B1的縱坐標(biāo),并直接寫(xiě)出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案