【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A0,3),點Dx軸上一動點,以AD為邊在AD的右側(cè)作等腰RtADE,∠ADE90°,連接OE,則OE的最小值為(

A. B. C. 2D. 3

【答案】A

【解析】

根據(jù)全等三角形的判定先求證△ADO≌△DEH,然后再根據(jù)等腰直角三角形中等邊對等角求出∠ECH45°,再根據(jù)點在一次函數(shù)上運動,作OE′⊥CE,求出OE′即為OE的最小值.

解:如圖,作EHx軸于H,連接CE

∵∠AOD=∠ADE=∠EHD90°,

∴∠ADO+EDH90°,∠EDH+DEH90°,

∴∠ADO=∠DEH

ADDE,

∴△ADO≌△DEHAAS),

OADHOC,ODEH,

ODCHEH

∴∠ECH45°,

∴點E在直線yx3上運動,作OE′⊥CE,則△OCE′是等腰直角三角形,

OC3,

OE′= ,

OE的最小值為

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖象中所反映的過程是:小敏從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家,其中表示時間,表示小敏離家的距離,根據(jù)圖象提供的信息,以下說法錯誤的是(

A. 體育場離小敏家2.5千米B. 體育場離早餐店4千米

C. 小敏在體育場鍛煉了15分鐘D. 小敏從早餐店回到家用時30分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七巧板又稱智慧板,是中國民間流傳的智力玩具,它是由七塊板組成(如圖1),用這七塊板可拼出許多圖形(1600種以上),例如:三角形、平行四邊形、以及不規(guī)則的多邊形,它還可以拼出各種人物、動物、建筑等.請你用七巧板中標(biāo)號為①②③的三塊板(如圖2經(jīng)過平移、旋轉(zhuǎn)拼出下列圖形(相鄰兩塊板之間無空隙,無重疊;示意圖的頂點畫在小方塊頂點上):

1)拼成長方形,在圖3中畫出示意圖;

2)拼成等腰直角三角形,在圖4中面出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,線段AB,利用無刻度的直尺和圓規(guī),作一個滿足條件的△ABC:①△ABC為直角三角形;②tan∠A= .(注:不要求寫作法,但保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣8ax(a<0)的圖象與x軸的正半軸交于點A,它的頂點為P.點C為y軸正半軸上一點,直線AC與該圖象的另一交點為B,與過點P且垂直于x軸的直線交于點D,且CB:AB=1:7.

(1)求點A的坐標(biāo)及點C的坐標(biāo)(用含a的代數(shù)式表示);
(2)連接BP,若△BDP與△AOC相似(點O為原點),求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A3,3),B53).

1)已知點C2,-4),求四邊形AOCB的面積;

2)將線段OB先向上平移2個單位長度,再向左平移4個單位長度,得到線段O2B2,畫出兩次平移后的圖形,并求線段OB在兩次平移過程中掃過的總面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).

(1)畫出將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°圖形.

(2)填空:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,AD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CEAD,交AN于點E.求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案