【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長(zhǎng)與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)BD=9.6.
【解析】
試題(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD, ,再由圓周角定理可得 ,從而得到∠ OBE+∠ DBC=90°,即 ,命題得證.
(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長(zhǎng).
試題解析:(1)證明:如下圖所示,連接OB.
∵ E是弦BD的中點(diǎn),∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切線.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD外一點(diǎn),連接AE、BE和DE,過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=3.下列結(jié)論:①△APD≌△AEB;②EB⊥ED;③點(diǎn)B到直線AE的距離為;④S正方形ABCD=8+.則正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,過(guò)C作AB邊上的高CD,H為BC邊上的中點(diǎn),連接DH,CD上有一點(diǎn)F,且AD=DF,連接BF并延長(zhǎng)交AC于E,交DH于G.
(1)若AC=5,DH=2,求DF的長(zhǎng).
(2)若AB=CB,求證:BG=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長(zhǎng)線于F,BG⊥AE于G,BG=,則△EFC的周長(zhǎng)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(-4,5),并與y軸交于點(diǎn)C,拋物線的對(duì)稱軸為直線x=-1,且拋物線與x軸交于另一點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;
(3)如圖2,若點(diǎn)M是直線x=-1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過(guò)點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,AB∥CD,點(diǎn)E是在AB、CD之間,且在BD的左側(cè)平面區(qū)域內(nèi)一點(diǎn),連結(jié)BE、DE.求證:∠E=∠ABE+∠CDE.
(2)如圖2,在(1)的條件下,作出∠EBD和∠EDB的平分線,兩線交于點(diǎn)F,猜想∠F、∠ABE、∠CDE之間的關(guān)系,并證明你的猜想.
(3)如圖3,在(1)的條件下,作出∠EBD的平分線和△EDB的外角平分線,兩線交于點(diǎn)G,猜想∠G、∠ABE、∠CDE之間的關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b的圖象交x軸于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B,與兩坐標(biāo)軸所圍成的三角形的面積為8,則該函數(shù)的表達(dá)式為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com