【題目】如圖,正方形ABCD的邊長為8cm,E、F、G、H分別是AB、BC、CD、DA 上的動點,且AE=BF=CG=DH.
(1)求證:四邊形EFGH是正方形;
(2)判斷直線EG是否經過一個定點,并說明理由;
(3)求四邊形EFGH面積的最小值。
【答案】(1)證明見解析;
(2)直線EG經過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析;
(3)32cm2.
【解析】
試題分析:(1)由正方形的性質得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,證出AH=BE=CF=DG,由SAS證明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,證出四邊形EFGH是菱形,再證出∠HEF=90°,即可得出結論;
(2)連接AC、EG,交點為O;先證明△AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心;
(3)設四邊形EFGH面積為S,BE=xcm,則BF=(8-x)cm,由勾股定理得出S=x2+(8-x)2=2(x-4)2+32,S是x的二次函數(shù),容易得出四邊形EFGH面積的最小值.
試題解析:【解答】(1)證明:∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=BE=CF=DG,
在△AEH、△BFE、△CGF和△DHG中,
∴△AEH≌△BFE≌△CGF≌△DHG(SAS),
∴EH=FE=GF=GH,∠AEH=∠BFE,
∴四邊形EFGH是菱形,
∵∠BEF+∠BFE=90°,
∴∠BEF+∠AEH=90°,
∴∠HEF=90°,
∴四邊形EFGH是正方形;
(2)解:直線EG經過一個定點,這個定點為正方形的中心(AC、BD的交點);理由如下:
連接AC、EG,交點為O;如圖所示:
∵四邊形ABCD是正方形,
∴AB∥CD,
∴∠OAE=∠OCG,
在△AOE和△COG中,
,
∴△AOE≌△COG(AAS),
∴OA=OC,即O為AC的中點,
∵正方形的對角線互相平分,
∴O為對角線AC、BD的交點,即O為正方形的中心;
(3)解:設四邊形EFGH面積為S,設BE=xcm,則BF=(8-x)cm,
根據(jù)勾股定理得:EF2=BE2+BF2=x2+(8-x)2,
∴S=x2+(8-x)2=2(x-4)2+32,
∵2>0,
∴S有最小值,
當x=4時,S的最小值=32,
∴四邊形EFGH面積的最小值為32cm2.
科目:初中數(shù)學 來源: 題型:
【題目】你會求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值嗎?這個問題看上去很復雜,我們可以先考慮簡單的情況,通過計算,探索規(guī)律:
(1)由上面的規(guī)律我們可以大膽猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)= 利用上面的結論,求:
(2)22014+22013+22012+…+22+2+1的值是 .
(3)求52014+52013+52012+…+52+5+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家惠農政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達式;
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】修建某一建筑時,若請甲、乙兩個工程隊同時施工,8天可以完成,需付兩隊費用共3520元;若先請甲隊單獨做6天,再請乙隊單獨做12天可以完成,需付兩隊費用共3480元,問:
(1)甲、乙兩隊每天費用各為多少?
(2)若單獨請某隊完成工程,則單獨請哪隊施工費用較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A.0既不是正數(shù),也不是負數(shù)
B.1是絕對值最小的正數(shù)
C.一個有理數(shù)不是整數(shù)就是分數(shù)
D.0的絕對值是0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班50名學生期末考試數(shù)學成績(單位:分)的頻率分布直方圖如圖所示,其中 數(shù)據(jù)不在分點上,對圖中提供的信息作出如下的判斷:
①成績在49.5分~59.5分段的人數(shù)與89.5分~100分段的人數(shù)相等;
②成績在79.5~89.5分段的人數(shù)占30%;
③成績在79.5分以上的學生有20人;
④本次考試成績的中位數(shù)落在69.5~79.5分段內.
其中正確的判斷有( 。
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com