【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(1,0),BE⊥x軸于點(diǎn)E,一次函數(shù)y=x+b經(jīng)過點(diǎn)B,交y軸于點(diǎn)D.
(1)求證:△AOC≌△CEB;
(2)求△ABD的面積.
【答案】(1)詳見解析;(2)6.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì),可得AC=BC,∠ACB=90°,根據(jù)余角的性質(zhì),可得∠OAC=∠BCE,根據(jù)AAS,可得答案;
(2)根據(jù)全等三角形的性質(zhì),可得B點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法,可得b的值,根據(jù)三角形的面積公式,可得答案.
(1)證明:∵BE⊥CE,
∴∠BEC=90°,
∵△ABC是等腰直角三角形,
∴AC=BC,∠ACB=90°,
∵∠O=∠ACB=90°,
∴∠OAC+∠ACO=90°,∠ACO+∠BCE=90°,
∴∠OAC=∠BCE,
在Rt△AOC和Rt△CEB中,
,
∴Rt△AOC≌Rt△CEB(AAS);
(2)如圖:作BF⊥y軸于F點(diǎn),
∵Rt△AOC≌Rt△CEB,
∴CE=OA=2,BE=OC=1,
∴OE=CC+CE=1+2=3,
即B(3,1),BF=3,
將B點(diǎn)坐標(biāo)代入y=x+b,得3+b=1,
解得b=-2,
直線BD的解析式為y=x-2,
當(dāng)x=0時(shí),y=-2,即D(0,-2),
S△ABD=ADBF=×[2-(-2)]×3=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為的中點(diǎn),過點(diǎn)C作直線CD⊥AE于D,連接AC,BC.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若AD=2,AC=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長線上,連接EA,EC.
(1)如圖1,若點(diǎn)P在線段AB的延長線上,求證:EA=EC;
(2)如圖2,若點(diǎn)P在線段AB的中點(diǎn),連接AC,判斷△ACE的形狀,并說明理由;
(3)如圖3,若點(diǎn)P在線段AB上,連接AC,當(dāng)EP平分∠AEC時(shí),設(shè)AB=a,BP=b,求a:b及∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+3x﹣8的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)F是直線BC下方拋物線上的一點(diǎn),當(dāng)△BCF的面積最大時(shí),在拋物線的對稱軸上找一點(diǎn)P,使得△BFP的周長最小,請求出點(diǎn)F的坐標(biāo)和點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點(diǎn)Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點(diǎn)Q的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①為Rt△AOB,∠AOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn).分別得圖②,圖③,…,則旋轉(zhuǎn)到圖⑩時(shí)直角頂點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點(diǎn)的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對角線的交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請?zhí)骄奎c(diǎn)O在移動過程中可形成什么圖形?
(4)如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請你就“點(diǎn)O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是 ,共應(yīng)用了 次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,則需應(yīng)用上述方法 次,結(jié)果是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)的門票價(jià)格如表:
購票人數(shù)/人 | 1~50 | 51~100 | 100以上 |
每人門票價(jià)/元 | 12 | 10 | 8 |
某校七年級(1)、(2)兩班計(jì)劃去游覽該景點(diǎn),其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨(dú)購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團(tuán)體購票,則只需花費(fèi)816元.
(1)兩個班各有多少名學(xué)生?
(2)團(tuán)體購票與單獨(dú)購票相比較,兩個班各節(jié)約了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是AD和AE上的動點(diǎn),則DQ+PQ的最小值( 。
A、2
B、4
C、
D、
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com